
Cl<dG�G�* S|��*�Gb*
A Contribution to

Human-Centered Adaptivity in E-Learning

Kevin Fuchs

Cognitive Spacetime
A Contribution to Human-Centered Adaptivity

in E-Learning

Dissertation

Approved by the University of Education Karlsruhe,
submitted in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy (Dr. phil.)

by Kevin Fuchs

from Göppingen, Germany

2019

1st reviewer: Prof. Dr. Mutfried Hartmann

2nd reviewer: Prof. Dr. Peter A. Henning

3rd reviewer: Prof. Dr. Gerd Gidion
subject: Computer Science
date of submission: August 1, 2018

ii

Acknowledgements

This work was hard. But unimagined things become possible
when we meet the right and warm people at the right time.

Let me express my great gratitude to my supervisor Prof.
Peter A. Henning who substantially promoted and encour-
aged me professionally as well as personally. At his institute I
found the best working conditions one could wish for, provid-
ing space for passion and creativity.

I am also deeply grateful to my supervisor Prof. Mutfried
Hartmann who was an inspirational and motivating patron to
me. Our conversations broadened my horizon beyond my field
and were a vital enrichment for me and this work.

I also thank the other members of my thesis committee: Prof.
Gerd Gidion and Prof. Petra Lindemann-Matthies.

Last but not least, I sincerely thank the Friedrich Naumann
Foundation for Freedom and the generous scholarship they
gave me. This research would not have been possible without
this support.

iii

Contents

1 Human Machine Symbiosis 1
1.1 Teaching Machines 3
1.2 Computability 6
1.3 Turing Machine 9
1.4 Complex Machines 13
1.5 The Empathetic Algorithm 16
1.6 Adaptivity with Turing Machines 23

2 Adaptivity in E-Learning 27
2.1 Ontologies . 27

2.1.1 Knowledge Representation 28
2.1.2 Inference Procedures 35

2.2 Cognitive Spacetime 39
2.2.1 Worldlines of Learning 41
2.2.2 Learning Content Feature Space 53
2.2.3 Learning Histories as Spatio-Temporal

Trajectories 65
2.3 Spatio-Temporal Databases 72

2.3.1 Spatio-Temporal Indexing 78
2.3.2 Spatio-Temporal Queries 83
2.3.3 Clustering 90

2.4 Adaptivity Cycle 93
2.4.1 Knowledge Base 96
2.4.2 Learner-Triggered Knowledge Base Up-

date . 98
2.4.3 Inference Process 99
2.4.4 Generating Learning Instructions 100

v

Contents

3 Hypercube Database 103
3.1 Database Access Module 103
3.2 Vector Module 105
3.3 Hypercube Module 108

3.3.1 Trajectory Segments 108
3.3.2 Spatial Indexing 110
3.3.3 Query Implementation 111

3.4 REST API . 118
3.4.1 Insertion of Measuring Points 118
3.4.2 Listing Trajectory Attributes 119
3.4.3 Visualizing Vectors 120
3.4.4 Grid Index Creation 121
3.4.5 Executing Spatio-Temporal Queries . . 122

3.5 Database Implementation 123
3.5.1 Entity Relationship Model 123
3.5.2 ATSQL Representation 125
3.5.3 Segment Interpolation 129
3.5.4 Grid Index 130

4 Summary and Conclusion 135

vi

1 Human Machine
Symbiosis

The raise of so-called artificial intelligence has made people
believe that computers may some day be congenial with hu-
man beings. In the past computers were regarded as effective
but soulless and unintelligent assistants to free humans from
routine tasks. Computers were supposed to perform time-
consuming but mechanical calculations. Today’s computers
are universal machines that can execute an almost unlimited
variety of software. The increase of processing speed allows
us to implement complex software which does not seem to
have much in common with past computing machinery. In
the field of education this awakened the desire to build al-
gorithms which didactically support learners or even emulate
human-like tutors.

However, despite the apparent complexity of today’s software,
algorithms are step-by-step procedures which in their core are
purely mechanical. So before introducing just another ap-
proach for technology-enhanced learning let me reconsider a
seemingly naive but fundamental question. Given the nature
of how computers work on the machine-level, can we emulate
human-like tutors with computers? I believe that we can not
because human beings are in possession of abilities which can
not be implemented with algorithms due to their mechanical
kernel and the formal systems on which algorithms are built.
However, there exists a concept with which we can implement
a mutual human-machine interaction that enables computers

1

1 Human Machine Symbiosis

to at least adapt themselves to a learner. The result of this
is what we call ”adaptive systems”. Suppose an algorithm
owns a knowledge representation of learning material and the
learner. Then it can deduce on that knowledge base, modify it
and adapt its own procedures. The key questions are: how do
we construct such a knowledge base, how do we infer on it and
in what way does today’s technology provide better methods
than in the past?

This introductory chapter is supposed to provide a theoretical
understanding of what we can implement with computers and
how we can implement it. This will sketch the possibilities and
limitations of technology enhanced processes. I will show that
on the one hand even an adaptive algorithm — which looks
almost intelligent from outside — is based on only mechanical
procedures. But on the other hand such an algorithm can be
powerful enough to implement an adaptive human-machine in-
teraction which can be utilized for technology-enhanced learn-
ing. In the subsequent chapters I will elaborate in detail on
the question how a respective knowledge base and deduction
process can be implemented. In this context I will introduce
the ”Cognitive Spacetime” model which represents a novel
method to model learner’s behavior in arbitrary learning envi-
ronments. Within the Cognitive Spacetime similar behaviors
among learners can be found and analyzed. In contrast to
other approaches the Cognitive Spacetime allows for taking
social aspects of learning into account. For example we can
identify potential learning mates and bring learners socially
together by analyzing their behaviors on the grounds of simi-
larities. Another aspect highlighting the Cognitive Spacetime
is its facility to focus on comparisons between learners which
makes it a more learner-centric method. Moreover, it is based
on the observation of real learners which means that its knowl-
edge base increases and improves over time.

I should note that the term ”Cognitive Spacetime” also occurs
in the context of psychology and was published by Stocker in

2

1.1 Teaching Machines

2014 [105]. However, the Cognitive Spacetime model which I
introduce in this work is an entirely different concept. It is de-
rived from the ”Cognitive Space” model which was developed
in the INTUITEL research project [56, 57]. The ”Cognitive
Space” of INTUITEL was coincidentally also published in 2014
and there is no coherence between Stocker’s and my work.

1.1 Teaching Machines

The algorithmic emulation of a human teacher and its imple-
mentation with machines has been firing the imagination of
both computer scientists and philosophers. We remember the
first attempts of Sidney Pressey [83, 87] and the research of
Burrhus F. Skinner [10, 103]. In the first half of the 20th
century Sidney Pressey introduced what he called teaching
machines. These were mechanical devices which could serve
specific tasks like multiple choice tests or the completion of gap
texts. Followed by Pressey’s attempts, the psychololgist Bur-
rhus. H. Skinner elaborated on teaching machines claiming
that they were a promising technology for the improvement of
mass education [103].

At that time, educational psychologists focused on the con-
cepts of behaviorism. Pressey’s teaching machines therefore in
particular emphasized the technique of reinforcement learning.
The idea behind Pressey’s machines was to keep the learner
engaged and modify her behavior by a constant flow of in-
stant stimuli. When the learner entered her answers into the
device she got an immediate feedback by receiveing a ”cor-
rect” or ”wrong”. In fact today’s world of e-learning still con-
tains many testing and training procedures that still follow
this straight and simple pattern.

Although Pressey’s first attempts took place almost a century
ago, the motivation behind it and the hopes people like him

3

1 Human Machine Symbiosis

and Skinner associated with machinery are not really differ-
ent from today. Skinner’s paper on teaching machines in 1958
[103] is filled with arguments that could also be replicated by
contemporary publications. He claims that a student should
not only be a passive receiver of information. Instead she
should be an active part in the instructional process which
would be supported by teaching machines in so far as they keep
the learner in permanent interaction. Interactivity has been
considered a significant argument until today. Contemporary
research stresses the impact of interactivity for learner’s moti-
vation and success in e-learning scenarios [12, 28, 71, 74, 99].
Interactivity may be considered as interaction of learners with
learners, interaction of a learner with the instructor or inter-
action of the learner with the system [6].

Skinner considered the utilization of technology as a tool to
make education serve more people more efficiently. His imagi-
nation followed the idea of different machines and programs to
serve learners of different types and learning speeds. In other
words: technology was supposed to make education more scal-
able and adaptive in terms of learners’ diversity. Skinner
thought of teaching machines as a ”private tutor” not replac-
ing teachers but supporting individual learners where a human
teacher was not available.

These arguments are remarkable as they have not changed
too much as far as e-learning in the 21st century is concerned
[95, 96, 97]. Even the idea of combining multiple media is
not new. Skinner also described how teaching machines could
be used in combination with additional learning material like
maps, charts, diagrams and auditory content. He also sketched
a universal paradigm for technology enhanced learning that
is still present and valid in today’s e-learning systems: he
stated that the process of teaching and learning has to be
transformed into a linear sequence of small atomic steps to be
implementable with a machine.

4

1.1 Teaching Machines

Actually, Pressey’s and Skinner’s ideas and questions have re-
mained contemporary. And the ahistoric ductus on it may
give us the impression that the digitization of education has
been stuck through decades. However, we should consider two
things. First, steady technological progress has been increas-
ing our expectations by new technologies. Therefore, the ques-
tion how learning can be supported by technology can never
be answered definitely. Instead it was and will be lifted to a
new level each time some new technology is available. Second,
classical educational institutions have remained places where
many people meet at the same place to study the same things
at the same time for the same goals. Or in other words: they
have remained places where diversity is flattened and where
many desires for forms of digital learning never emerged.

However, beyond the classroom, digital technologies and the
world wide web have allowed access to alternative sources of
knowledge. Outside the classroom students became more in-
dependent from time and local restrictions. Students use dig-
ital media in addition or even in opposition to what teachers
present them. Additionally, the sheer variety of digital con-
tent enables students to explore things from multiple perspec-
tives. Therefore, the digitization of education has actually
taken place. But it seems as if this happened somewhere out-
side the classical educational institutions. In particular, this
has changed the role of teachers. They are no longer the only
point of reference in the learning process. This has advantages
but it also bears some risks. Students learning with material
on their own may be more free but they also run into the risk of
losing their way. It would be a desirable thing if we could use
technology to help teachers to understand and supervise their
students outside the classroom. In this scenario algorithms
are supposed to be the teacher’s tools and not her replace-
ment. The wide field of learning analytics has been motivated
by this desire. The guiding theme of the work which I present
here, is therefore best understood as a new concept for human

5

1 Human Machine Symbiosis

machine symbiosis including the student, the teacher and the
computer in a threesome mutual relationship.

1.2 Computability

Technological progress, especially in the field of artificial in-
telligence, has fed the imagination of intelligent algorithms
that can communicate and empathize with human beings. In
fact, there has been a significant increase considering the level
of connectivity and complexity we can build with computers.
But in an impressive way the underlying models of comput-
ers or any other form of automaton have been unaltered since
these days. In 1936 Alan Turing introduced the model of a
universal state-based machine [111, 112] which — together
with the λ calculus by Alonzo Church [22, 23, 24] — has re-
mained the strongest model for any form of algorithm — no
matter if it is realized with wires and semiconductors or with
mechanical gadgets made of wood and metal.

In fact, Pressey’s teaching machines were nothing else than
state-based automatons that can also be expressed as instances
of Turing’s universal machine. Actually there are only two fac-
tors that have leveraged the capacity of computers to perform
complex algorithms: Firstly this is the principle of nesting
and reusing algorithms in the context of high level program-
ming languages. One line of code in a high level programming
language is translated into maybe hundreds or thousands of
instructions on a lower machine level. The lowest of all those
levels is the central processing unit (CPU) of a computer. Any
program in any programming language is finally compiled to a
small and lucid set of very basic operations the CPU can un-
derstand. The second factor is nothing more than processing
speed, meaning how many of those atomic operations a CPU
can perform within a second. I will explain this in detail and

6

1.2 Computability

we will see that — although this may sound magic or irritating
in the first place — these two factors are the major difference
between Pressey’s simple machines and today’s technology.

Around 1672 Gottfried Wilhelm Leibniz developed his stepped
reckoner — a mechanical device that could perform all four
arithmetic operations. Leibniz formed the idea that if an
appropriate formal language was provided, there should be
a step-by-step procedure that can calculate the truth values
for any given mathematical statement. This relates to David
Hilbert who in 1928 formulated a problem that became known
as the ”Entscheidungsproblem” (decision problem) [58, 59]
which is summarized as follows: Suppose we have a formal,
consistent system based on axioms and rules of inference that
allow us to build new theorems. Is there a mechanical proce-
dure that can determine for any statement that is formulated
from that system if it is true or not and does this procedure
answer this question within a finite number of steps? In other
words this asks for a formal system to be complete, meaning
that for any statement we can say if it is true or not. It is
obvious that if we want to use such a system for computation
it has to be consistent, which means that a statement must
always be said to be exclusively true or false no matter which
way of inference is applied.

In 1931 Kurt Gödel gave a partly negative answer to the
Entscheidungsproblem [43]. He referred to the system of the
Principia Mathematica [120] proving that there are statements
that can not be decided to be true or false. He concludes that
if a formal system is expressive enough and if it is consistent
we can formulate paradoxes that are not decidable within the
system itself. This does not mean that these statements are
not decidable at all — they may be explainable from outside
the system but not inside of it. Gödel managed this proof
by building self-referring statements the provability of which
would follow from their non-provability which leads to a con-
tradiction. Gödel’s mathematical argument can be illustrated

7

1 Human Machine Symbiosis

metaphorically by the following example: Imagine a person
who has written a sentence on his chest saying ”The words on
my back are false”. His back shows the sentence ”The words
on my chest are true”. These are self-referring contradicting
statements leading into an infinite loop. We may discuss this
paradox from a meta-perspective, identify it as an insane con-
struction and reject it. However, this is only possible if the
observer is located outside in some higher, more expressive
system. A computing procedure that is based on a particu-
lar formal system can not look at itself from such a position.
It is captured inside that system and can only infer with its
axioms and rules. Therefore, for a computing procedure such
paradoxes are undecidable and this is the reason why decid-
ability has been such a big question in the field of computing
machinery. The question of decidability constitutes the limits
of anything that is and will be computable with machines.

Kurt Gödel gave a negative answer to the Entscheidungsprob-
lem for the formal system founded by the Principia Mathemat-
ica. But still a universal answer was missing. In the thirties
of the 20th century Alonzo Church and Alan Turing found
that universal answer which was negative, too. Both Church
and Turing invented a model each defining very clearly which
functions are computable and which are not. Church’s model
became known as the λ calculus [22, 23, 24] whereas Turing’s
work became famous as the Turing Machine [111, 112]. The λ
calculus and the Turing a Machine are formulated in entirely
different ways but in fact they are equivalent. This equivalence
is known as the Church-Turing thesis.

Alan Turing’s respective paper had the title ”On Computable
Numbers, with an Application to the Entscheidungsproblem”
[111]. As the title suggests, the invention of the Turing Ma-
chine served a greater objective: namely finding an answer to
Hilbert’s Entscheidungsproblem: Is there a mechanical proce-
dure with which we can say for any statement in a formal
system if it is true or not? The term ”mechanical proce-

8

1.3 Turing Machine

dure” is a synonym for ”machine”. Before one can answer
this question a definition of ”machine” is needed. Actually
this is where Turing’s way of proof begins. In the mentioned
paper he first excessively described his definition of a universal
machine. Then — given that definition — he worked out that
and why there are statements that cannot be decided with such
a machine. His arguments also formed the so-called ”Halting
Problem”. In plain words, the halting problem formulates the
simple question if an algorithm stops or runs eternally. Re-
member Gödel’s way of proof for incompleteness: he built a
mathematical statement based on self-reference the provabil-
ity of which would conclude from its non-provability. Turing
did something very similar by sketching the following problem:
Imagine a computer running a program P1 which may halt.
Now imagine a computer running another program P2 that
never halts if the program P1 halts. Now let P1 be P2, mean-
ing that P2 runs depending on itself but doing the opposite.
The question if the program halts is undecidable.

1.3 Turing Machine

Alan Turing did not only answer the Entscheidungsproblem,
telling us what can not be computed by a machine. The Turing
machine also tells us what on the contrary is computable. It is
a universal model for any computationally complete system. I
will now elaborate in more detail on the Turing Machine. Such
a machine, as illustrated by figure 1.3 consists of an endless
input/output tape, a read/write head working on that tape
and a control unit that contains the program to be executed.
The tape is subdivided into cells. Each cell may contain one
symbol from a finite alphabet. Such a symbol embodies the
smallest piece of information. The machine can move the read-
/write head either left or right but always only by one cell for
each iteration. Depending on the program, the machine has

9

1 Human Machine Symbiosis

Figure 1.1: Turing machine

a finite set of inner states. The combination of a read symbol
and the inner state causes a transition into the next state of
the machine. This set of transformations is defined by a set
of rules incorporated by the program.

In his publication Alan Turing used tables to define these tran-
sitions. I now give an example of a simple Turing machine that
checks if two given binary sequences of same length are equal.
I call this Turing machine the ”Letter Comparator”. We sup-
pose that the two binary numbers are represented on the tape
like this:

1 0 0 x 1 0 0

Underscores ” ” indicate blank symbols and ”x” separates the
two binary numbers to be compared. The Turing machine is
defined by table 1.1 which contains for each line the current

10

1.3 Turing Machine

state, the symbol that is read, the executed operation and the
transition to the next state. The operations are:

• print a symbol on the tape

• move the head by one cell to the right

• move the head by one cell to the left

Table 1.1 describes a machine that starts from the initial state
”i” with the read/write head positioned on the first binary
digit on the left. The machine first deletes this digit printing
a blank symbol in its place. Remembering the found digit, the
machine moves to the right until it finds the first binary digit
following the delimiter symbol ”x”. If that digit is not equal
to the remembered one the machine stops in the state ”f”. If
the digit is equal it is replaced by ”x” and the machine moves
back to the first remaining digit on the left. From there the
process repeats. If all digits are equal the machine stops in
the state ”t”.

In his original paper Alan Turing also explains how a pair
of current state and input symbol can also refer to another
table of a different Turing machine. This is equivalent to a
program calling a sub-program. In our example the binary
sequences could represent ASCII codes for single letters. A
routine for string comparison of whole words could therefore
be a superior Turing machine calling the Turing machine of
table 1.1 for each letter of the string. This simple construction
with a machine calling another machine enables us to build
very complex algorithms being built from smaller ones.

Remember Pressey’s teaching machines. Those were mechan-
ical constructions that can also be replicated with Turing ma-
chines. Take for example gap texts for which students had to
type specific words into the machine. This is exactly described
by the mentioned string comparison algorithm. Even more
simple is the implementation of multiple choice questions. If
each possible answer is labeled with a single symbol we only

11

1 Human Machine Symbiosis

Table 1.1: Letter Comparator

state symbol print move next state
i x t
i 0 Right z
i 1 Right o
o x Right e
o 0 Right o
o 1 Right o
z x Right r
z 0 Right z
z 1 Right z
e x Right e
e 0 f
e 1 x Left a
r x Right r
r 0 x Left a
r 1 f
a x Left a
a 0 Left a
a 1 Left a
a Right i

12

1.4 Complex Machines

have to compare the student’s answer with the symbol asso-
ciated with the correct answer using our Letter Comparator
from table 1.1.

1.4 Complex Machines

The Turing Machine and the λ-calculus are more than just
models about how computers and algorithms work. They pro-
vide an irrevocable answer to the question what is computable
and what is not, no matter if we build a machine from gears
and arms or from semiconductors and wires. With all of this
in mind, the question arises what leveraged the enormous per-
formance of computers in the last decades.

Ultimately, the answer is given by two simple factors: firstly
the nesting and reuse of functions and secondly the processing
speed. On the machine level a central processing unit (CPU)
uses a relatively small set of basic operations. These are for
example arithmetic operations like Add, Subtract, Multiply,
Divide or logical operations like And, Or and so on. Each
operation consists of the operator and its operands. Both the
operator and the operands are encoded by binary numbers. To
illustrate this, the arithmetic operation 7+3 might be encoded
by three numbers each of which is eight bits long:

10101110︸ ︷︷ ︸
Add

00000111︸ ︷︷ ︸
7

00000011︸ ︷︷ ︸
3

We can easily imagine a CPU as a Turing machine that pro-
cesses a tape containing an arbitrary number of such opera-
tions, each of them encoded by binary numbers of the above
form. The machine reads bit by bit and each time it recog-
nizes a particular operator the machine is transferred into the
respective state — in this example this would be the ”Add”

13

1 Human Machine Symbiosis

state. Then the Turing machine calls another Turing machine
in the sense of a sub routine. This sub machine processes
the consecutive bits representing the operands, performs the
requested operation on them and prints the result to some
space on the tape. Finally, the child routine ends returning
to the parent machine which awaits the next operator on the
tape. This is how computation works on the lowest level.

Actually hardly anybody will write computer programs di-
rectly for a CPU bit by bit, although it is possible. Instead we
use assembly languages to replace binary numbers by human-
readable mnemonics like ”ADD 7, 3” or high-level program-
ming languages like C, C++, C#, Scala, Haskell or Java. Any
of these languages is translated into binary machine code to
be processed on a CPU.

The mightiness of high-level programming languages is in-
duced by the simple fact that one line of code may be trans-
lated into a large number of single machine operations. More-
over, multiple lines of code can be encapsulated by reusable
functions which again can be nested by other functions. On
an even higher level large sets of functionality are provided by
libraries and frameworks (see figure 1.2).

Remember that this paradigm of reusable, nested code is al-
ready expressed by the Turing machine and its capability of
calling other Turing machines. However complex a computer
program may be, at the very bottom it is translated into bi-
nary machine code that is composed by only a relatively small
set of basic operations. After all, the growing capacity of to-
day’s and future devices is determined by the number of such
basic operations a CPU can process per time unit. Therefore,
it is processing speed coupled with function nesting that makes
all the difference between today’s technology and Pressey’s
first teaching machines.

14

1.4 Complex Machines

Figure 1.2: From high-level languages to machine code

15

1 Human Machine Symbiosis

1.5 The Empathetic Algorithm

In the previous writing I have sketched a brief and condensed
history of what constitutes the foundations of computer tech-
nology. I also summarized the early efforts to construct teach-
ing machines and I located them within the theoretical struc-
ture of computer science.

The Turing machine and the λ-calculus universally answer the
question of computability. Whatever we intent to implement
with algorithms, these models tell us if and how it can be
implemented. This is not a merely theoretical assertion. For
example the Haskell programming language is built up from
the λ-calculus [30]. When it is compiled to machine code a
Haskell program is translated intermediately into a represen-
tation of the λ calculus.

The motivation of this work is carried by the intention to
implement a kind of private tutor with computers. Having
Church’s and Turing’s models of computability in mind, can
we frame rules on the implementation of such a system? In
other words: is there a generic design pattern for human-like
tutorial guidance that can be derived from these models? This
question leads to a great venture inasmuch as we are lacking
a clear imagination of what essentially a ”human-like” tutor
is supposed to be. What are the significant traits of such an
entity?

The main trait of a human teacher is empathy in the sense of
being able to take over the perspective of her student. This
is not only a requirement for teachers. Any form of success-
ful human interaction is conditioned by the imagination of
another person’s mind, but it plays a particularly important
role for the field of education and instructional design. Tak-
ing over another person’s perspective is the basic requirement
to explain things to somebody else. This is also true and es-
pecially challenging in the case of an instructional designer

16

1.5 The Empathetic Algorithm

who creates online courses without being confronted person-
ally with her target group. During the design process she has
to imagine the perspectives and situations of those students
who potentially use her learning material. A good and sensi-
tive instructional designer will try to imagine her target group
as a diverse spectrum of different learning habits, goals and
preferences. She therefore will provide multiple ways for in-
dividual students to work on the respective learning material.
Generally this is expressed by the concept of user models. In
the field of e-learning different flavors of such models exist,
commonly known as learner models, learner personas or digi-
tal twins.

We should bring to our mind that the original process of think-
ing, imagination and perspective taking is achieved by the
human teacher who then transforms it into a representation
that can be processed within the formal system of a machine.
Consequently, the machine reproduces the very result of hu-
man thinking and empathy. It does not replicate the process
of thinking and empathizing by itself. Obviously the human
being is the constructive authority whereas the computer only
represents the executing instance following human-made rules.
In the scenario of technology-enhanced learning, the human’s
role is to instruct a computer to instruct another human. Algo-
rithms may create learning recommendations and instructions
but they can only do this on the basis of human knowledge
which in the end is the teacher’s knowledge. This clarifies the
role of such algorithms but the question remains how to build
them.

An algorithm that is able to create didactically meaningful in-
structions for an individual learner would require the emula-
tion of perspective taking skills. In order to explain something
to somebody else or instruct him, one needs to imagine things
from the other person’s view. Human beings start learning this
form the age of four. This has been researched by Jean Piaget
[85, 118]. A well-known experimental-setup to illustrate per-

17

1 Human Machine Symbiosis

Figure 1.3: Three mountains task

spective taking skills is Piaget’s Three-Mountains task which
is shown by figure 1.3. In this arrangement a child is situated
in front of a three-dimensional landscape. When viewed from
different perspectives the diorama shows different details. A
doll is seated down at the table with the child sitting at the
opposite side. The child is asked to imagine what the scenery
looks like from the doll’s perspective. From a collection of
photographs, the child has to select the one which represents
best the doll’s view. Children who are younger than four usu-
ally fail and select the photograph that represents their own
view. At the age of eight, children successfully complete the
task. Young children are obviously not able to imagine an-
other person’s perspective, unable to recognize the difference
between themselves and others. This is what Piaget called the
egocentrism of the child [29, 64].

A machine can easily be programmed to perform this very
specific task. Pattern recognition can be used to recognize as-

18

1.5 The Empathetic Algorithm

pects, parts and perspectives of the landscape. However, this
would require humans to separate the entire task into clearly
defined sub-procedures and have them solved by human-pro-
grammed algorithms. Deep learning algorithms from the field
of artificial intelligence are capable of developing new reper-
toires of behavior based on training with sample data. Such
a machine can be trained for a set of different landscapes.
But if the machine is confronted with a new and totally un-
known landscape it is doomed to fail. Furthermore, the Three-
Mountains task mainly considers the visual-spatial perception.
But taking the perspective of another person also includes in-
ner processes that are not observable from outside. Imagining
what is going on in another person’s mind therefore remains
a human privilege and there is a reasonable explanation why
computers are not capable of it.

Let me illustrate this with an example by Robert L. Selman
who wrote on the developmental psychology by Piaget. In
Selman’s example a child is forbidden to climb on trees as she
may hurt herself. Now there is a kitten stuck on a tree. What
is the child supposed to do if on the one hand the kitten has to
be saved but on the other hand the child is forbidden to climb
on the tree [100]. If we want to understand the meaning and
relevance of rules, it is essential to take over the perspective of
the other person who made the rules. Moreover, understand-
ing the meaning of rules is required for rejecting or altering
rules, considering other conflicting rules or circumstances.

Instead of a human child, let me generalize these thoughts to
any form of a ”system”. What happens if a system works on
a set of rules but is incapable of understanding the context
and meaning of them? Taking the example above, we can for-
mulate two simple rules: save the kitten and never climb on
trees. These two rules work well as long as there is no situa-
tion triggering both rules. But if the kitten has to be saved
from a tree, these two rules create a situation which is plainly
not decidable because one rule implicates the opposite of the

19

1 Human Machine Symbiosis

other rule. It may be decidable for a conscious human being.
But it is undecidable for a system which is unable to look at
its own rules from a higher perspective, and this is especially
the case for any form of machine or algorithm. Actually, this
can be understood as another variation of Hilbert’s Entschei-
dungsproblem. Alan Turing’s and Alonzo Church’s answers
accordingly restrict everything which is implementable with
algorithms. Taking a Turing-complete programming language
it is impossible to program the above described dilemma of
the kitten one-to-one. This is because such programming lan-
guages are exactly designed this way. Any system which is
supposed to be computationally complete must prohibit the
formulation of such paradoxes.

Being able to look at your own rules from a meta-perspective
or to take over another person’s perspective is related to what
we call consciousness. If we want to take over another person’s
perspective we first have to be aware of ourselves by dissoci-
ation to other people and our environment. Consequently,
replicating a human teacher with a computer would therefore
demand from us to create a machine that is conscious of itself.

Can machines be conscious? Alan Turing once suggested the
Turing test to falsify if a machine can be considered ”intelli-
gent” [113]. Besides intelligence, the Turing test is often also
related to the question of consciousness. The experiment, as
shown by figure 1.4 focuses exclusively on the way a machine
communicates with a human being. A human test person talks
to both a computer and a human over a terminal. The com-
puter and the human counterpart are hidden from the test
person. This way the terminal-based conversation is the only
way for the test person to find out if he is talking to a com-
puter or a human. The computer passes the test successfully
if the test person can not distinguish it from the human.

This definition is remarkable as it does not make any assump-
tions on the way human intelligence or consciousness works on

20

1.5 The Empathetic Algorithm

Figure 1.4: Turing test setup

the neural, biological or psychological level. It declares human
beings as the only authority to judge, using human-machine
interaction as the basis of elevation. Moreover, this approach
follows the simple principle of falsification: we gracefully as-
sume that a machine is intelligent as long as a human being
is not able to distinguish it from a human counterpart.

The Turing Machine and the λ calculus provide strong models
telling us what is implementable with machines. I opened this
section with the question if these models can provide us guid-
ance for the implementation of human-like tutoring systems
and it lead to the unsatisfactory problem of consciousness.
Can machines be conscious? I choose an easy escape and leave
the discussion on conscious machines to philosophers, content-
ing myself with a more modest concept for which I certainly
can say that it is implementable with algorithms. This con-
cept is called ”adaptivity” and it is also a core pattern in
human communication. Whenever we try to understand an-
other person’s perspective and situation we commonly start

21

1 Human Machine Symbiosis

from suggestions that are not exact and may be built from
prejudices. We use mutual communication to converge and
make our image more accurate. Human intelligence therefore
is closely related to communication. This is why Alan Tur-
ing’s idea to make human-machine interaction a basic criterion
for intelligent machines directs us in the right way. However,
communication should not be understood only in the sense of
verbal language. It should rather be seen as a wide range of in-
teractions that constitute an exchange of information and the
creation of knowledge from this information. We can consider
this as a form of an adaptive process: We start from a fuzzy
image of another person. Information exchange and mutual
feedback makes this image become crisper and we constantly
refine and alter our image.

This principle can seamlessly be transformed into adaptive
human-machine interaction. In the context of computer-based
instruction and teaching, an adaptive system is able to observe
a user’s behavior and progress, match it with its knowledge
base and modify its own procedures. The system may then
generate recommendations for the user. The user may follow
the recommendations or she may deviate from it. The system
may then react on this deviation by reconsidering the user’s
new situation and generate new recommendations. This de-
scribes a mutual form of adaptivity with the user influencing
the procedures of the machine and vice versa.

Mutual adaptivity is a superior alternative to the aforemen-
tioned user models. I claim that the idea behind user models
is partly based on a misconception. This is in particular the
idea that we can somehow replicate a learner’s behavior if only
we know her ”configuration” well enough. The misconception
is formed by the unspoken premise that it is at all possible
— at least to a certain degree — to have enough information.
This is heavily challenged by the sheer complexity and over-
abundance of possible influencing factors. This is especially
meaningful if we consider learning not only as a cognitive but

22

1.6 Adaptivity with Turing Machines

also as a social process which takes place in institutions and
their social settings. There are simply too many variables,
which are hard to measure and even hard to identify [97].

On the contrary, the idea of mutual adaptivity immanently ap-
preciates incomplete and uncertain knowledge. We can start
from a vague set of assumptions about a learner. But in the
long term the adaptive process will result in a converging im-
age. I will now introduce this concept of adaptivity on the
basis of the Turing Machine. Doing so I will present a uni-
versal design pattern for adaptive systems that is independent
from any technology it is built upon.

1.6 Adaptivity with Turing Machines

How do we create adaptive algorithms? In the previous sec-
tions we learned that the Turing Machine reads symbols from
a virtually endless tape. The combination of an input symbol
and the current inner state causes a transition into the next
state. Additionally, with a particular transition the machine
may print a symbol back onto the tape. A stream of output
symbols may represent information for a human or another
machine. But it can also be read by the same machine which
printed them. In other words: the Turing machine may re-
cycle its own output stream as its input stream. This allows
an interesting application: within a transition the machine
can print a representation of its internal state on the tape
which then is read again as input by the same machine caus-
ing another transition. I claim that this simple mechanical
back-coupling mechanism can be interpreted as a transient
manifestation of primitive machine consciousness. It is tran-
sient in so far as the back-coupling process only lasts for a
single instance of a state transition. However, when imple-
mented in the form of a cycle this is the only but sufficient

23

1 Human Machine Symbiosis

way to implement an adaptive algorithm to perform human
machine interaction.

First, imagine that the inner state of the machine — which is
incorporated by the program and its data — includes a knowl-
edge base about the user and the semantics of the content she
is working with. Second, assume that the machine gets in-
formation from outside about the user and the environment.
This information may be provided by the user’s actions or by
sensory data. Any input from outside triggers a state tran-
sition that also modifies the knowledge base according to the
retrieved user input or sensory data. Within such a transition
the system may feed its own input with a representation of its
new inner state, generating instructional output for the user.
This process describes an adaptivity cycle that is geared by
user actions and sensory data and it provides a universal defi-
nition of an adaptive system based on the model of the Turing
machine.

Let my apply this to a ”teaching machine” or — more gen-
erally — to an adaptive learning environment. An adaptive
Turing machine implementing some kind of tutoring function-
ality should host a knowledge base to embody a representa-
tion of learning content and learning behaviors. The knowl-
edge base should be both human-understandable and machine-
processable. By being also human-understandable, the knowl-
edge base can be built and understood by a teacher without
the need of special technical expertise.

Furthermore, the system must observe the learner. The ob-
servation may include the learning material as well as arbi-
trary parameters measured by the system or observed by the
teacher. If relevant actions of the learner or changes of the
parameters take place, this has to trigger an update of the in-
ternal knowledge base. The machine then has to back-couple
itself to its own altered inner knowledge base, perform an in-
ference process on it and finally generate recommendations for

24

1.6 Adaptivity with Turing Machines

the learner. The learner’s reaction again becomes an input for
the next transition. This is what finally constitutes a mutual
interplay between human and machine. Two key questions
arise: first, how can we model knowledge about learning con-
tent and learners? Second, how can a machine infer on it?

25

2 Adaptivity in E-Learning

In the previous chapter I have introduced a universal de-
sign principle for adaptive systems to build a mutual human-
machine interaction cycle. The described method utilizes the
capability of a Turing Machine to back-couple on itself within
a state transition. To be feasible in a learning environment
there must be a knowledge base representing a learner’s state
and the semantics of the learning content. This knowledge
base has to be altered with every action of the learner and
according learning recommendations have to be generated for
the learner. In this chapter I elaborate in greater detail how
such a knowledge base can be constructed and how we can
algorithmically draw conclusions from it in order to generate
learning recommendations for a specific learner.

2.1 Ontologies

My leading principle is the idea that pedagogical and didac-
tic expertise should be left with human experts like teachers,
tutors and creators of learning material. They should define
the semantics of the learning material whereas the only re-
sponsibility of the computer is inference and the generation
of recommendations. This defines a human-machine symbio-
sis with humans providing the knowledge base and algorithms
doing the calculation. This requires a kind of language that is
shared and understood by both humans and the machine.

27

2 Adaptivity in E-Learning

Ontology languages offer excellent possibilities to transform
human knowledge into both a human- and machine-readable
form. Moreover, formal methods exist to perform logical infer-
ence on ontology languages. We can therefore use ontologies
for the encoding of human knowledge as well as for deriv-
ing verifiable statements from them. In section 2.1.1 (Knowl-
edge Representation) I discuss ontology languages and their
application for adaptive e-learning systems. I will refer to the
INTUITEL research project (Intelligent Tutorial Interface for
technology Enhanced Learning) which demonstrates the uti-
lization of ontology-based descriptions. In section 2.4.3 (Infer-
ence Process) I will also explain how an inference procedure
on an ontology works on the machine level.

Inferring on ontologies is closely related to the problem of
decidability which I discussed in the introductory sections.
Actually, an ontology language is a formal system built from
axioms and rules. Anything that counts for formal systems
and their computability therefore also holds for ontology lan-
guages. An ontology language must be carefully defined to be
decidable. The INTUITEL project provides a clear example
how ontologies can serve to select those objects from an arbi-
trary set of learning material that is most appropriate for a
specific learner and her particular situation. I will show that
the result of an inference process is a simple step-by-step set
reduction of pieces of learning material.

2.1.1 Knowledge Representation

Semantic web ontology languages like OWL [5, 9] allow us to
formulate human knowledge in a way which can be under-
stood by both humans and computers. The INTUITEL sys-
tem (Intelligent Tutorial Interface for Technology Enhanced
Learning) [39, 56] is the first prototype of an adaptive learn-
ing environment which uses ontologies as a knowledge and

28

2.1 Ontologies

inference basis. Using the OWL language, INTUITEL can
infer on didactic and pedagogical meta knowledge. On the
one hand INTUITEL is a universal design pattern for adap-
tive e-learning systems. It provides a sample architecture and
network protocols from which producers of e-learning system
may derive their own implementations. On the other hand
the developers of INTUITEL also implemented a prototype
system. They also built plugins for multiple Learning Man-
agement Systems like Ilias, Moodle, Crayons, eXact or Clix.
These plugins implement the respective protocols and lift the
mentioned learning management platforms to adaptive sys-
tems [39, 57, 114, 115]. INTUITEL sends textual recommen-
dations of learning units the learner is supposed to process
next. The according plugin receives these messages over the
network protocols and presents them to the learner within the
user interface of the e-learning platform. Figure 2.1 provides
an overview of the INTUITEL components and how they in-
teract.

Let me now explain how, in principle, an ontology language
is used to represent didactic and pedagogical knowledge and
how a reasoning process infers on it. The following example
ontology, as illustrated by figure 2.2 describes knowledge about
both learning material and learners. It contains the following
information:

1. Maria is a student and she has difficulty with the topic
”Lorentz Transformation”

2. Exercises A to D deal with “Lorentz Transformation”

3. Exercises A and B are didactically required before C and
D

4. Maria prefers video-based learning material

5. Exercise B is video-based

29

2 Adaptivity in E-Learning

Figure 2.1: Components of the INTUITEL system

30

2.1 Ontologies

Figure 2.2: example ontology

Rule 1 tells us that for the student Maria all objects may be
of interest if they deal with ”Lorentz Transformation”. Rule
2 tells us that exercises A,B,C an D satisfy this condition.
We therefore can reduce the set of learning material to these
four exercises. Rule 3 provides another restriction saying that
Maria should first proceed with exercise A or B because C
and D expand on them. Consequently, in a further step we
can reduce the set to exercises A and B. Rule 4 tells us that
Maria prefers video-based content. In the last step this rule
can be used to even perform a further reduction of the learn-
ing content. If video-based content exists among the learning
objects we can recommend them with higher priority. Rule 4
finally says that exercise B is video-based. Consequently we
can recommend exercise B to Maria.

This procedure describes a step-by step set reduction by fol-
lowing simple axioms and logical rules. With each step the
application of a rule reduces the set of learning material by
one step further until all rules are applied and a minimal set

31

2 Adaptivity in E-Learning

of appropriate learning objects remains. The process includes
the application of knowledge referring to both the learning ma-
terial and the learner. However, if the set reduction process is
supposed to be executed by a computer the according axioms
and rules have to be defined very clearly. What we actually
need is some kind of vocabulary and grammar specifying which
semantic annotations are allowed. There must be a basic set of
strictly defined axioms and rules as well as clear instructions
how we can build new theorems from them. Otherwise a ma-
chine can not work on it. Taking the example ontology above
we would have to define entities like “student”, “exercise” or
“video” and relations like “deals with”, “has difficulty with”
and “prefers”. If this rule set is defined properly a machine
can infer on any ontology which uses these annotations.

Formulating such a clear system of machine-processable ax-
ioms and rules is exactly the purpose of ontology languages.
The aforementioned INTUITEL system is based on a peda-
gogical ontology which is defined with the Web Ontology Lan-
guage (OWL) [5, 9]. This ontology is derived from the ”Web
Didactics” approach which was introduced by Norbert Meder
[70, 75, 108, 109]. The Web Didactics approach is the result of
a meta analysis of learning material and common patterns of
structure and organization. The vocabulary of this ontology
organizes learning material by learning units which by scope
are comparable to lessons. These units comprise learning ob-
jects which are semantically interconnected by their didactic
roles.

In such an ontology, the term ”learning object” (LO) has a
central meaning. A learning object represents an atomic piece
of knowledge which may be a book, a single page of a doc-
ument, a video sequence or a hyperlink to a source from the
world wide web. But learning objects may also be composed
by smaller ones. For example a book can be regarded as a
learning object which again consists of single chapters. In a
learning management system a composed learning object may

32

2.1 Ontologies

also be represented by a folder or similar container objects.
The granularity finally depends on the content editors and the
underlying platform. The pedagogical ontology of INTUITEL
also provides annotations to define hierarchical and chronolog-
ical relations between both learning objects and higher-level
learning units. This allows for the definition of predefined, rec-
ommended learning pathways [55, 124]. Figure 2.3 shows an
exemplary structure of an INTUITEL-enhanced course. The
diagram shows learning objects and how they are organized
into lessons and courses. The arrows indicate semantic rela-
tions forming learning pathways.

From the pedagogical ontology one can derive subject-specific
ontologies for any knowledge domain. This is what sepa-
rates INTUITEL from common learning and training soft-
ware which is often restricted to specific subjects and dis-
ciplines. The ontology-based approach allows for encoding
human meta-knowledge in a plug-and-play manner. As long
as the subject-specific ontology follows the rules of its parent
ontology — the pedagogical ontology of INTUITEL — the
inference engine of INTUITEL can process it.

In addition to the pedagogical ontology, INTUITEL also in-
cludes a learner state ontology which contains knowledge about
the learner’s characteristics and progress measures. Although
this is a separate ontology INTUITEL merges both the ped-
agogical and the learner state ontology into one. The result
of this is an ontology that contains the pedagogical and the
learner related knowledge in one combined representation. Re-
member our example ontology with the student Maria. This
ontology contained pedagogical knowledge like exercises deal-
ing with specific topics or being didactically dependent on
other exercises. This is analogue to the pedagogical con-
tent of the ontology. On the other side the example also
describes learner-related knowledge like Maria having diffi-
culty in ”Lorentz Transformation” or preferring video-based
material. This is the learner-related content which is ana-

33

2 Adaptivity in E-Learning

LO

LO

Lesson

LO LO

Lesson

LO LO

LO

LO

Lesson

LO LO

LO LO

Lesson

Course

Figure 2.3: Structure of an INTUITEL-enhanced course

34

2.1 Ontologies

logue to the learner state ontology. Note that the example
ontology with Maria is just an illustrative example to sketch
how in principle an ontology description of learning material
and learners works. The original pedagogical ontology and its
is explained in detail by the authors of INTUITEL in [39].

2.1.2 Inference Procedures

If an ontology is clearly defined we can have algorithms in-
fer on it. Remember my elaborations on formal systems and
decidability in section 1.2 (Computability). An ontology, basi-
cally, is a formal system built on axioms and rules from which
we can create new theorems. These theorems again can be
verified with the same rules the ontology provides. However,
in order to have algorithms infer on an ontology it has to
be decidable. Remember, that decidability is linked with the
expressiveness of a system. If a formal system is too expres-
sive it can not be guaranteed that a theorem is decidable. In
other words: a formal system which is too expressive, can not
be computationally complete. For this reason, ontology lan-
guages have to be restricted by their level of expressiveness.
The Web Ontology Language OWL provides different levels of
expressiveness: OWL Full, OWL DL and OWL Lite [9]. OWL
Full is the most expressive version but it does not provide com-
putational completeness. There can never exist any reasoning
procedure for full computation of such an ontology. OWL DL
is a restricted version of OWL Full. OWL Lite, finally, is an
even more reduced variant. In contrast to OWL Full, both
OWL DL and Lite satisfy computational completeness.

Inference on ontologies can be performed by universal seman-
tic reasoners like Pellet [102] and HermiT [60, 101] or by self-
developed software modules as it is the case with INTUITEL.
At first glance it seems hard to imagine how software can gen-
erate logical conclusions from an ontology. Remember that

35

2 Adaptivity in E-Learning

Figure 2.4: example ontology with organisms

finally any algorithm can be represented in terms of the Tur-
ing machine. I now provide an extremely simple algorithm for
verifying relations as they are present in ontologies. Assume
that there is an ontology as shown in figure 2.4. This ontology
contains subclass relationships of organisms. For example we
can tell from the ontology that a fox is a mammal and a mam-
mal is an animal and not a plant. If a sequence of relations is
provided, we can determine if a respective transitive relation
is true. Take for example the following sequence of relations:

fox→ mammal→ animal

36

2.1 Ontologies

From this sequence, the transitive conclusion that a fox is an
animal can be determined as true:

(fox→ mammal→ animal) =⇒ (fox→ animal)

Conversely, the conclusion that a fox is a plant can not be
verified:

(fox→ mammal→ animal) 6=⇒ (fox→ plant)

Provided a sequence of relations in the form ”something is
something else”, we may answer questions like ”is something
something else?”. If we know that a fox is a mammal and a
mammal is an animal we can positively answer the question
”is fox an animal?”. I now define a simple algorithm for this
task:

First: Assign each element of the ontology a unique symbol
in the form of a binary number of fixed length. For example
we may write ”fox” as the binary number 0001, ”mammal” as
0010, ”animal” as 0011, ”plant” as 0100 and so on.

Second: Formulate the according relations in the ontology as
a simple ordered list of symbols. Again take the relations of
the fox example:

fox is a mammal, mammal is an animal

This accords to the following simple ordered list of symbols
which internally are represented as binary numbers:

fox,mammal,mammal, animal

Third: Formulate your question ”is something something else?”.
Take the symbol for ”something” and place it at the beginning

37

2 Adaptivity in E-Learning

of the ordered list. Take the symbol for ”something else” and
put it at the end of the list. for example the question ”is fox
an animal?” results in the expanded list below.

fox, fox,mammal,mammal, animal, animal

Fourth: any list of this sort has an even number of symbols.
Start from the beginning of the list pairing every two consec-
utive symbols:

(fox, fox), (mammal,mammal), (animal, animal)

If and only if all paired symbols are equal, the question ”is
something something else” will be answered with ”true”.

Remember that the first rule claimed that symbols are en-
coded as binary symbols of equal length. In section 1.3 (Tur-
ing Machine) I defined the ”Letter Comparator” — a Turing
machine to compare two sequences of binary numbers. I also
explained that a Turing machine may call another Turing ma-
chine in the sense of a subroutine. We can easily imagine a
Turing machine that successively uses the ”Letter Compara-
tor” as a subroutine to validate if the pairs of symbols are
equal. As soon as any of the subroutines yields ”false” the
question ”is something something else?” is answered with
”false”. If all subroutines yield true, the overall answer is
true.

Of course reasoners for ontology languages are much more
complex. But this extremely simple example gives you an
idea how we can use simple mechanical procedures to perform
logical reasoning. It also clarifies an immanent characteristic
of machine-based reasoning: at its core, any reasoner is just
a dumb machine comparing numbers. Anything in an ontol-
ogy — classes, instances and relations — is represented by a
number and the machine can only determine if two things are

38

2.2 Cognitive Spacetime

the same or not. The machine is never aware of any mean-
ing. What things mean can only be determined by the human
being who defines and interprets the ontology.

Note, that all rules which hold for formal systems in general
are also true for ontologies: the ontology must be computa-
tionally complete. Moreover, the reasoner can only work on
things it knows from the definitions of the ontology. If a new
entity or relation occurs which is not part of the definitions,
the reasoning process will fail.

2.2 Cognitive Spacetime

In his paper on teaching machines from 1958 [103] Burrhus
Skinner already anticipated a basic design principle for the
implementation of instructional designs with mechanical pro-
cedures in machines and algorithms: He claimed that learning
content has to be transformed into some form of linear se-
quence of atomic learning items. The concept of learning ob-
jects in INTUITEL and their alignment along learning path-
ways closely reflects this principle.

Semantic relations between pieces of learning material — as
they can be described by ontologies — create a semantic net-
work with non-linear and ambiguous pathways. In this sense,
any instructional design or learning behavior results in trans-
forming these relations into a linear sequence along the time
dimension. Taking the picture of a semantic network, the re-
sult of an instructional design corresponds to the projection
of this network into a linear trajectory. I therefore consider
time as a crucial dimension for the characterization of learn-
ing behavior. Ontology languages can be used to describe
predefined learning pathways that are based on didactic rec-
ommendations of a didactic expert. We also can determine a
learner’s current position and state within such an ontology.

39

2 Adaptivity in E-Learning

However, ontologies are hardly appropriate for capturing and
describing the historicity of learning behavior. While learning
analytics has been a popular field, handy models for the tem-
poral description of learning behavior have been missing. A
major problem is constituted by the enormous variety of vari-
ables and the richness of heterogeneous data sources that are
supposed to be taken into consideration for learning analytics
tasks.

In section 2.2.1 (Worldlines of Learning) I discuss data that I
retrieved from en experimental setup to illustrate how spatial
and temporal patterns give us an insight into learning behav-
ior. I then introduce a feature space which is built from sets of
meta-data dimensions. Those meta-data dimensions describe
features of learning content and learners in an arbitrary learn-
ing environment and locate both learning content and learners
inside the feature space.

In addition to its ontology approach the INTUITEL project al-
ready provided a basic predecessor model of a so-called ”Cog-
nitive Space”. My feature space is an extensive enhancement
of the INTUITEL model. Because time is a crucial dimen-
sion in that feature space it enhances the ”Cognitive Space”
to what I call the ”Cognitive Spacetime”. Both the Cognitive
Space and the Cognitive Spacetime share some similarities.
However, the spatial dimensions of the two models are defined
entirely different. This is explained in detail in section 2.2.2
(Learning Content Feature Space).

Learners who progress on specific learning content are located
at corresponding positions in the Cognitive Spacetime model.
Being observed over time, learners’ behaviors draw trajecto-
ries in that space. Section 2.2.3 (Learning Histories as Spatio-
Temporal Trajectories) gives a profound explanation of this
whereby section 2.3 (Spatio-Temporal Databases) discusses
how data structures and algorithms from the field of spatio-

40

2.2 Cognitive Spacetime

temporal databases can be exploited to analyze, compare and
cluster trajectories of different learners.

2.2.1 Worldlines of Learning

For temporal analysis of learning behavior I introduce two
types of information: spatial and temporal information. Spa-
tial information refers to classical variables that can be mea-
sured in a learning environment or about an individual. These
may for example be variables indicating location, device, skill-
and progress-levels, frequency of chat and forum usages, grades,
scores or meta-data items which describe the learning mate-
rial. Temporal information refers to time-related patterns and
correlations among the spatial data. Together, spatial and
temporal data become spatio-temporal information. Suppose
a learner’s cognitive position is described by n spatial and
one temporal dimension. Together, this constitutes a (n+ 1)-
dimensional spacetime. When learners progress within that
spacetime they draw trajectories which — following Hermann
Minkowski’s concept of spacetime — we may also call learners
worldlines [76, 77].

The principal focus of this work is on the development of a
generic spatio-temporal model that can abstract any numeric
form of such data to purely geometric trajectories. Imagine
learners who progress on similar learning content in a simi-
lar way. If their behavior is reduced to only geometric infor-
mation we can describe similar learning histories only on the
basis of spatio-temporal nearness in an abstract space. The
spatio-temporal model which I discuss here provides an elegant
means to join multiple heterogeneous data sources. Moreover,
it reduces the complexity of such data to a plainly geomet-
ric problem. This section illustrates by some examples how
spatio-temporal information can be manifested in a data set.
It provides a basic understanding for the concept of spatio-

41

2 Adaptivity in E-Learning

temporal nearness which is then generalized in section 2.2.2
(Learning Content Feature Space).

The following provides a special visualization of experimen-
tal data that was captured from real learning environments.
The data was visualized with a special coloring technique. For
each data item its global minimum and maximum value was
determined. Within that range, the values were associated
with colors from the HSL color spectrum running from purple
as the lowest to red as the highest value which resulted in a
heat map. Similar values could then be identified visually by
the similarity of their colors. To achieve a maximum of visual
discrimination, for each variable the whole color spectrum was
exploited which means that the minimum and maximum val-
ues always were assigned the according boundaries of the color
spectrum with intermediate values distributed evenly.

The data was stored and visualized with the Hypercube Da-
tabase which is a prototype of a spatio-temporal database.
The database stores such data as geometric objects in the
form of multidimensional trajectories which have the shape of
hyper-polylines. Accordingly the aforementioned visualization
actually represents such trajectories. However, as it becomes
difficult to print trajectories with more than three dimensions
I decided to use this coloring technique. The Hypercube Da-
tabase is introduced in chapter 3. To introduce the concept
of spatio-temporal nearness, a further understanding of the
database is not needed yet.

The first sample includes only a small number of 15 students
and two spatial dimensions, but it is sufficient to demonstrate
how in principle we can discover cooperation among students
using a concept of spatio-temporal nearness. The students
edited 47 articles in a Semantic MediaWiki. The logging data
of the MediaWiki included only two data records indicating
whether a student viewed or edited an article. The articles
were grouped by topics and they were enumerated whereby

42

2.2 Cognitive Spacetime

each topic group was given a continuous interval of numbers.
These numbers were associated the respective values of the
color spectrum. As articles of the same topic group fall into
a continuous and narrow interval of numbers they correspond
to a subarea in the color spectrum. We can therefore iden-
tify students working on articles of the same topic group at a
glance.

Figure 2.5 presents an excerpt of the data including seven
students. It lists one trajectory for each student covering a
time period of three months. The first row of each trajectory
contains the normalized histogram of the student’s activities
which indicates when and how frequently he worked on the
MediaWiki platform. The second row shows that the stu-
dent has viewed an article and the third row shows articles
that were edited. Illustration 2.5 reveals three topic groups:
bluish, greenish and orange-colored. Trajectory 2 and 4 rep-
resent students that joined the course later. Note that the
visualizations hold a value for a variable until it is updated by
a new event. This means that if a student worked on a specific
article and if she is inactive for the following two weeks, the
visualization will show the respective color for a period of two
weeks.

I stated that the coloring technique is supposed to visualize
spatio-temporal nearness for high-dimensional vectors. In this
example, there are only two dimensions which is the view
and edit variable. Therefore, we can also illustrate the stu-
dents’ activities by real trajectories. Figure 2.6 shows the
same data in the form of spatio-temporal poly-lines. These
trajectories include the time dimension equally to the spa-
tial dimensions. Following Hermann Minkowski, we may also
call them the ”worldlines” [76, 77] of learners in Cognitive
Spacetime. The view and edit variable represent the spatial
dimensions whereas time serves as the third dimension. In
this illustration we can identify the same clusters by spatial
and temporal nearness. Trajectories 1 and 2 correspond to

43

2 Adaptivity in E-Learning

Figure 2.5: cooperating users

44

2.2 Cognitive Spacetime

Figure 2.6: cooperating users’ trajectories

the orange-colored group in figure 2.5. Trajectories 3 and 4
correspond to the bluish group and trajectories 5, 6 and 7
correspond to the greenish group.

We can also see that trajectories 2 and 4 represent students
that joined the course later which is indicated by the fact
that their trajectories start lately along the time axis. We
furthermore observe in figure 2.6 that the students’ activities
increase around a certain time point which is also visible in
the histograms in figure 2.5. This time point was shortly be-
fore the exam period. While some of the students had been
lazy during the lecture period they nervously started editing

45

2 Adaptivity in E-Learning

Figure 2.7: cooperating students, 90 minutes period

their articles at the end of the semester. However, both fig-
ures reveal activities after the exam period because students
were given the chance to correct and improve their articles
afterwards to achieve better grades.

The recorded data can be visualized at per-second granularity.
Figure 2.7 shows a zoomed excerpt for two students of a lec-
ture with a time period of 90 minutes. Students often edited
articles by following the enumerated lists of Wiki pages swap-
ping between viewing and editing mode. This is expresssed by
the consecutive gradient color patterns especially in the data
of trajectory 5. In the trajectory plot (figure 2.6) this results
in stair patterns which can be seen best in trajectory 6 and 7.
Both visualizations — the coloring technique and the trajec-
tory plot — show another commonly observed behavior: stu-
dents did not complete one article by another. instead they
edited them partwise returning to articles again and again.
With the coloring technique this is obvious because of repeat-
ing colors. In the trajectory plot we can identify this behavior
by circular patterns in trajectories 1–4.

As this example includes only a small number of students and
dimensions it is not representative. But it gives us a clear hint
how in principle the concept of spatio-temporal nearness can
be used to make common learning behavior visible. Another
– more representative example – is data that was retrieved
from students’ behavior on a video platform: The platform
contained lecture recordings for students and served as an ad-

46

2.2 Cognitive Spacetime

ditional offer for students supplementing the common lectures.
The platform content included 55 different video files and 200
users. It provided logging data over a period of four semesters.
The logging data was extracted and processed from the inter-
nal log files of the platform and it resulted in the following
data items for each user:

• system: the operating system of the user (Windows,
Mac OS, Linux, Android, etc.) — 10 different systems
were identified

• subnet ip: the user’s subnet ip according to the net
mask 255.0.0.0 — 33 different subnets were recorded

• title: a unique title identifying a single video file — 55
different titles were included

• seen: the percentage value of how much of a single video
file a user has watched ranging from 0% to 100%

As in the example before, each variable is visualized as a time
line representing its values in the form of a color map. The
student’s activity is again represented as a normalized his-
togram in the first row of each track. According to the heat
map visualization each operating system is represented by one
in 10 different colors, each subnet IP by one in 33 colors and
each video title by one in 55 colors. The seen-percentage value
is represented by a color scale that equates to the spectrum of
light running from purple (0%) to red (100%). We can visually
characterize student’s behavior on the basis of their activity
frequency, fluctuations in their variables and time-dependent
correlations between variables. In this concrete example, five
groups could be determined.

Regular users repeatedly and continuously used the video
service during periods of several months. Figure 2.8 visualizes
three representative individuals of that group.

47

2 Adaptivity in E-Learning

Occasional users watched the lecture recordings only occa-
sionally. A visualization example of three occasional learners
is illustrated by figure 2.9.

Dense users were inactive during longer time periods but
used the video platform intensively during short time periods
which indicates that they used the lecture recordings for spe-
cific purposes like the preparation for an exam. See figure 2.10
where the magnified area represents a time period of 10 days.

Mobile users were indicated by a fluctuation of the ”system”
and ”subnetip” variable. Mobile learners were mostly present
among the group of regular users. A visualization of three
representative mobile users is shown in figure 2.11.

Stationary users rarely or never changed their location or
operating system. For example some dense users showed sta-
tionary behavior (see the first dense user in figure 2.10). One
reason might be that when students prepare for exams they
often do this in a ritualized way to discipline themselves which
involves learning at particular times in a particular place like
in a library or at home. A visualization of three representative
stationary users is shown in figure 2.12.

Note that the visualizations hold a value for a variable until
it is updated by a new event. This means that if a student
watches for example 25% of a video and if she is inactive for the
following two weeks, the visualization will show the respective
color for a period of two weeks.

The visualizations reveal two types of patterns: spatial and
temporal ones. Temporal patterns are constituted by periods
and frequencies of activity and the change rate of variables.
Spatial patterns refer to measured variables which in these ex-
amples are subnet ip, seen percentage, operating system, video
title and activities like viewing or editing a document. Spa-
tial and temporal information together form spatio-temporal
patterns.

48

2.2 Cognitive Spacetime

In the above examples spatio-temporal nearness might be un-
derstood as similar wiki articles, the same subnet ip or the
same operating system of a user within the same time period.
The visualizations encode spatial nearness with similar colors
which is most obvious in the case of cooperating students on
the MediaWiki platform. In terms of space the MediaWiki
example constitutes a two-dimensional vector with the ”view”
and ”edit” variable as its components. In the video platform
example this vector has four dimensions composed by the vari-
ables ”system”, ”subnet ip”, ”title” and ”seen”. We can imag-
ine an abstract space in which these vectors draw trajectories
as they evolve over time just the same way as they do in figure
2.6. This provides a first insight about how arbitrary variables
can be transformed into a spatio-temporal model. But how
can we utilize such nearness for learning environments and
what kind of analysis can be useful?

In the case of the MediaWiki platform we obtained a spatial
model by assigning same-topic articles to corresponding in-
tervals of numbers which located same-topic articles near to
each other in the space of the database. However, the vari-
ables of the video platform are hardly useful to operate with
spatio-temporal nearness. For example the subnet ip variable
alone is only a number and two subnet IPs can not tell us
much about ”nearness”. However, using subnet ips we could
approximately resolve geographic locations which would be a
more useful application. Equally, the video title is useless as
long as we do not have any further information. As long as
we only use the raw data items we can only say if two learners
watch the same video or not or if they are in the same sub-
net or not. Consequently, we first need a more sophisticated
concept to define similar objects in a learning environment.
Second we need to define how these similarities have to be
transformed into a geometric model so we can utilize it for
trajectory analysis.

49

2 Adaptivity in E-Learning

Figure 2.8: regular users with histogram (1), video title (2),
system (3), seen percentage (4), subnet ip (5)

Figure 2.9: occasional users with histogram (1), video title (2),
system (3), seen percentage (4), subnet ip (5)

50

2.2 Cognitive Spacetime

Figure 2.10: dense users with histogram (1), video title (2),
system (3), seen percentage (4), subnet ip (5)

51

2 Adaptivity in E-Learning

Figure 2.11: mobile users with histogram (1), video title (2),
system (3), seen percentage (4), subnet ip (5)

Figure 2.12: stationary users with histogram (1), video title
(2), system (3), seen percentage (4), subnet ip
(5)

52

2.2 Cognitive Spacetime

2.2.2 Learning Content Feature Space

In section 2.1.1 (Knowledge Representation) I introduced the
INTUITEL project and its ontology-based approach to rep-
resent didactic and pedagogical meta knowledge. One aspect
about INTUITEL has not been mentioned so far: the INTUI-
TEL system also implemented a basic spatial model of individ-
ual learning pathways. this concept is called the Hypercube
Model [41] and it is the preliminary version of my enhanced
”Cognitive Spacetime” model. It is based on a k-dimensional
feature space that describes atomic learning objects (LO) by
k meta-data items. Before elaborating on that feature space
I will describe the original Hypercube Model of the INTUI-
TEL project. Then I will explain in detail how the Hypercube
Model is altered and enhanced to form the feature space of
the Cognitive Spacetime.

Hypercube Model

The Hypercube model of INTUITEL describes a n-dimensional
space with n denoting the number of atomic learning objects
in a learning environment. The term ”learning environment”
may refer to any form of digital or even analogue collection of
learning material that is related to a specific topic or knowl-
edge domain. A Learning Management System or a Wiki plat-
form are just two concrete examples of learning environments.
The concept is not limited to specific technologies.

Imagine a collection of n atomic learning objects. At any time
we may determine how much a learner has progressed on spe-
cific objects in that collection. In the Hypercube Model this
is expressed for each learning object by a numeric value from
the interval [0, 1]. At the very beginning all objects will be
valued 0 for a particular learner. The more the learner pro-
ceeds in the learning environment, the more learning objects

53

2 Adaptivity in E-Learning

will be assigned higher values. Taking all n learning objects
together we obtain n intervals. These intervals are applied
as coordinate axises in a n-dimensional hyperspace. As these
dimensions are restrained to the interval [0, 1] we obtain a hy-
percube. A learner’s position in this space is expressed by a
vector L = (l1, ..., ln). This vector is also called the ”cognitive
position” of the learner and the entirety of the space inside
the hypercube is called the ”cognitive space” [40, 56].

Just as an aside, let me mention that the INTUITEL hyper-
cube in principle can be regarded as a fuzzy hypercube for
which the vectors inside are fuzzy sets [41, 68, 72, 98]. Fig-
ure 2.13 illustrates a hypercube with n = 3 learning objects
whereas figure 2.14 illustrates a hypercube with n = 4. Each
edge represents the interval [0, 1] for a knowledge object a
learner may attend to.

Suppose that a learner proceeds and progresses within the
learning environment. Then the according cognitive position
vector evolves over time. The result of this movement is a
trajectory in the n-dimensional space of the hypercube. If a
learner works on the knowledge objects in quite a disciplined
manner — finishing every learning object before starting the
next object — this results in straight-line pathways that are
strictly aligned along the edges of the hypercube. In contrast,
The learning pathway of a less disciplined learner would result
in a more volatile pathway which is located inside the hyper-
cube [106]. This is illustrated by the 3D-hypercube in figure
2.15 where the bold edges represent the disciplined learner and
the dotted trajectory represents a volatile pathway.

In section 2.1.1 (Knowledge Representation) I explained how
ontology descriptions are used to define recommended learn-
ing pathways. However, the pathways which I discuss here
are user-specific pathways that are defined by the behavior
of an individual user. In order to recommend learning ob-
jects to a learner INTUITEL infers on its pedagogical ontol-

54

2.2 Cognitive Spacetime

Figure 2.13: 3d hypercube for n = 3 learning objects

55

2 Adaptivity in E-Learning

Figure 2.14: 4d hypercube for n = 4 learning objects

56

2.2 Cognitive Spacetime

Figure 2.15: 3d hypercube for n = 3 learning objects with
pathways

57

2 Adaptivity in E-Learning

ogy. This inference procedure may provide multiple predefined
learning learning pathways. INTUITEL uses the Hypercube
paradigm to compare these predefined pathways to the user-
specific pathway. Then the INTUITEL system tries to find the
predefined pathway that is most similar to the user-specific
pathway.

The INTUITEL algorithm for pathway selection is based on a
simple vector comparison which includes the learning objects
a learner has worked on and their chronological order on the
pathway. Again, let n be the number of learning objects in
a course. Then the learner’s cognitive position is represented
by the n-dimensional vector P = {xi} with i = 1, . . . , N and
xi ∈ [0, 1]. xi represents the degree of progress with respect
to the ith learning object.

The value of xi may be determined in different ways: It may
denote the learner’s degree of progress for the respective learn-
ing object as percentage value. It may be concluded from a
test item to review the learner’s progress. Given the most
simple case, xi only contains the information if a learner has
attended to a LO or not. The latter case would have xi de-
generate to xi = {0; 1}. At the start, when a learner has made
only little progress, the vector P will point close to the origin
of the hypercube. The more the learner progresses, the closer
P will converge to the theoretically maximum position which
equates to the vector Pe = {xi|∀xi = 1}. Pe implies that
the learner has progressed every single learning object in the
course with 100% success.

To compare a learner’s individual cognitive position with a
predefined learning pathway the developers of INTUITEL in-
troduce two vectors: LP represents the learner’s progress val-
ues of all learning objects in the course reflecting the chrono-
logical order on the predefined learning pathway. In other
words: LP takes the progress values of the learner and ar-
ranges them in the order he was supposed to learn. The

58

2.2 Cognitive Spacetime

second vector is denoted by ULP which is an abbreviation
for User Learning Pathway. ULP contains exactly the same
progress values as the vector LP except for one difference: the
sequence of the values reflects the chronological order in which
the learner actually did progress the learning objects. In this
sense the user specific cognitive position vector ULP is just
a permutation of the vector LP . The latter one represents
the cognitive position as it should be when the learner follows
exactly the predefined pathway.

Let me give an explanation which is slight variation of an
example in [41]: Suppose that there is a small course with
n = 10 learning objects {LO1, LO2, . . . LO10}. A predefined
learning pathway includes a subset of six learning objects in a
particular order:

LP ⇒ (LO3, LO1, LO5, LO4, LO8, LO6)

If the learner first processes LO1 completely, second LO4 com-
pletely and third LO5 to a degree of 60% his vectors LP and
ULP correspond to the following:

ULP = {x1, x4, x5, x8, x3, x6} = {1, 1, 0.6, 0, 0, 0}

LP = {x3, x1, x5, x4, x8, x6} = {0, 1, 0.6, 1, 0, 0}

Through the computation of a distance measure between these
two vectors, INTUITEL selects the LP that fits most the cur-
rent cognitive position of the learner. If the inference process
on the pedagogical ontology retrieves multiple learning path-
ways this measure is used to select the learning pathway that
fits most the current cognitive position of the learner [106].

It must be stressed that the vector LP and its permutation
ULP are snapshots of the learner’s current cognitive position.

59

2 Adaptivity in E-Learning

Indeed it reflects the chronological ordering of attended learn-
ing objects. But it does not yet consider temporal aspects
and historicity as I have sketched in section 2.2.1 (Worldlines
of Learning) because it does not explicitly include a tempo-
ral dimension. Furthermore, although the Hypercube model
does already anticipate a preliminary form of learning trajec-
tories, it does not yet include a concept describing similarities
of learning objects. It is therefore still far away from a real
feature space with which we may implement spatio-temporal
relations.

Advanced Hypercube Model

In the following I describe how the previously explained Hy-
percube is enhanced to a real spatio-temporal feature space.
The original Hypercube Model, as it was developed by the
INTUITEL researchers, maps a progress measure from the in-
terval [0, 1] to a dedicated dimension for each learning object.
This hypercube does not contain information about the sim-
ilarity of learning objects and it does not explicitly include
the time dimension. Therefore, the Hypercube Model is ex-
tended as follows: The dimensions do no longer map only
progress measures for learning objects. Instead, they repre-
sent values of arbitrary meta-data items. These values do not
need to be restricted to the interval [0, 1], they may have any
value that is numeric. Consequently, the hypercube becomes
a hyper-rectangular, which in case of optional normalization
may degenerate again to a hypercube. Finally time is added
as a special dimension.

In this feature space learning objects are located on the basis
of their meta-data descriptions. This allows us to find similar-
ities by spatio-temporal nearness. Learners draw trajectories
in this feature space as they progress along the learning con-
tent. In addition to LO-specific meta-data the feature space

60

2.2 Cognitive Spacetime

may also contain learner-related information. A learner’s tra-
jectory therefore is composed by three types of meta-data:

• LO properties: a number of n meta data items which
describe only properties of the learning objects

• learner properties:a number of o meta data items de-
scribing only properties of the learner

• learner/LO properties:a number of pmeta data items
describing learner-specific properties with regard to learn-
ing objects

In this form the feature space contains (n+o+p)-dimensional
data which do not necessarily describe learning content alone.
Instead the feature space describes learners and their posi-
tion within that (n+ o+ p)-dimensional space. Accordingly a
learner can be understood as a time-evolving vector:

V = (v1, . . . , vn︸ ︷︷ ︸
LO prop.

, vn+1, . . . , vn+o︸ ︷︷ ︸
learner prop.

, vn+o+1, . . . , vn+o+p︸ ︷︷ ︸
learner/LO prop.

)

A preliminary question arises: what kind of meta-data is most
appropriate to model spatio-temporal similarity measures? In
the course of previous considerations I mentioned that there
are data items which are less suitable and other items that
fit better into a spatio-temporal model. There are some basic
requirements to identify appropriate meta-data descriptions.
Firstly, such data items should be representable in a numeric
form that allows for discrimination and ordering of values. A
negative example was given by the ”subnet ip” and the ”title”
variable in the video platform data which I discussed in section
2.2.1 (Worldlines of Learning).

The dimensions of the feature space should be formed by items
which have an ordinal scale or higher. Nominal scales like a

61

2 Adaptivity in E-Learning

subnet ip or a video title can represent spatial information
only in the sense of “is the same” or “is not the same”. On
the contrary all items which have an ordinal scale or higher
may be potential candidates. This does not mean that data
with nominal scales can not be used. Indeed, they may provide
useful information. But if the feature space is largely or even
only constructed with nominal data a spatio-temporal model
like the Cognitive Spacetime will not make much sense. For
such cases, classical methods may be a better choice. The
listing below provides an example of appropriate meta-data
items:

LO properties

1. suitability for beginners on a scale from 0 to 5 points

2. suitability for advanced on a scale from 0 to 5 points

3. suitability for profession group X on a scale from 0 to 5
points

4. accessibility for people with handicaps on a scale from 0
to 7 points

5. usage of simple language on a scale from 0 to 5 points

6. portion of video content from 0% to 100%

7. portion of text content from 0% to 100%

learner properties

1. usage of social plugins on the platform (chats, forums,
etc.) in activities per week

2. bandwidth of the learner’s internet connection in MBit/s

3. biometric sensor data like eye tracking to determine the
learner’s state of arousal and concentration

62

2.2 Cognitive Spacetime

4. overall knowledge about the course evaluated regularly
as a score value from a test

5. geographic location

• longitute of GPS coordinates

• latitute of GPS coordinates

6. Big Five personality traits

• score on the ”openness” dimension

• score on the ”extraversion” dimension

• score on the ”agreeableness” dimension

• score on the ”conscientiousness” dimension

• score on the ”neuroticism” dimension

7. Kolb Learning Style Inventory

• score on the ”Concrete Experience” dimension

• score on the ”Reflective Observation” dimension

• score on the ”Abstract Conceptualization” dimen-
sion

• score on the ”Active Experimentation” dimension

learner/LO properties

1. completion level from 0% to 100%

2. test score from 1 to 10 points if the learning object in-
cludes a test

3. grade from 1 to 6 if the learning object is associated with
a grade

These examples also include variables like Kolb learning styles
[66, 67, 73] or personality traits like the ”Big Five” model [44]

63

2 Adaptivity in E-Learning

which will probably be static over long periods. Such data
can be included in the Cognitive Spacetime. But — similar to
nominal data — the great advantages of the Cognitive Space-
time will not pay off if the model largely or only consists of
static dimensions. But they can provide useful applications if
they are used in combination with time-changing data.

The learning styles and the personality traits illustrate another
interesting aspect of the Cognitive Spacetime: many instru-
ments like personality tests perform their classifications on the
basis of test batteries which first provide their results in the
form of scores along specific dimensions. The classifications
of these tests are then derived from these scores. The Cog-
nitive Spacetime allows for integration of the original score
dimensions instead of using the classification output.

Let us suppose that a learning environment like a Wiki or
a Learning Management System contains a set of learning
objects. The learning objects may even be distributed over
multiple heterogeneous systems. Such platforms usually pro-
vide functionality to annotate learning content with arbitrary
meta-data. We can annotate the respective learning mate-
rial according to the examples above. Provided that the con-
cerned platform lets us record the learning objects that are
accessed by learners, we can associate learners’ access records
with the according meta-data. Essentially, this also works if
the platform does not provide meta-data annotation function-
ality. The meta-data may also be kept separately from the
platform and it may even be associated with the learning con-
tent retrospectively. The only important information that is
needed is what learning objects were accessed and when they
were accessed. Together with an appropriate meta-data de-
scription we can transfer this conflated information into the
advanced Hypercube Model which then constitutes the feature
space.

64

2.2 Cognitive Spacetime

2.2.3 Learning Histories as Spatio-Temporal
Trajectories

In the feature space learning objects are spatially closer to
each other the more similar meta-data items they share. Be-
ing observed over time, learners leave traces in the feature
space as they attend to different learning objects over time.
These traces can be modeled as trajectories which are hyper-
polylines. If two learners work on familiar learning objects and
if they progress on them in a similar manner their trajectories
will be spatially and temporally close to each other. This is
how the aspect of historicity is modeled by the feature space.
In the original Hypercube Model of the INTUITEL approach
this space was called the ”Cognitive Space” and the learner’s
current position in it was called her ”Cognitive Position”. In
the advanced version of the hypercube, time is integrated as a
crucial dimension. I hence call it the ”Cognitive Spacetime”.

Let me now picture a simple example for a learner drawing
a trajectory in a feature space. Imagine a three-dimensional
feature space built from the following meta-data items:

1. suitability for profession group X on a scale from 0 to 5
points (LO property)

2. bandwidth of the learner’s internet connection in MBit/s
(learner property)

3. completion level from 0% to 100% (learner/LO property)

Let us denote the first item with x1, the second item with
x2 and the third one with x3. A learner’s position in this
feature space is defined by a time-dependent three-dimensional
vector v(t) = (x1(t), x2(t), x3(t)). The learning environment
shall contain N learning objects each denoted by LOn. Let us
assume that the learning environment records six consecutive
events of the learner at six different points in time:

65

2 Adaptivity in E-Learning

At time t1 the learner starts working on the learning object
LO1. LO1 is rated as suitable for the learner’s profession group
by 4 points and the learner has not yet made any progress
on the learning object. The learner is working on a desktop
system with a bandwidth of 3MBit/s.

At time t2 the learner is still working on LO1 but she has
completed it to a degree of 60%. Her bandwidth has dropped
to 2MBit/s.

At time t3 the learner starts working on LO3, bandwidth is at
3MBit/s and LO3 is suitable for her profession group with 1
point.

At time t4 she stops working on LO3, completion level of LO3

is only 10%, bandwidth has not changed.

At time t5 she has returned to LO1 and completes it to 100%.
She is now working on a mobile device and bandwidth has
dropped to 0.5MBit/s

At time t6 the learner proceeds with LO2, completion level
starts at 0% and bandwidth is still at 0.5MBit/s. LO2 is
suitable for the learner’s profession group with 3 points.

This activity sequence results in the following vectors:

v(t1) =

4.0
3.0
0.0

 v(t2) =

4.0
2.0
0.6

 v(t3) =

1.0
3.0
0.0



v(t4) =

1.0
3.0
0.1

 v(t5) =

4.0
0.5
1.0

 v(t6) =

3.0
0.5
0.0


This basic and very hypothetical example illustrates how —
in principle — learner activities are transformed into spatio-
temporal trajectories and how they are represented in the Cog-
nitive Spacetime model. Figure 2.16 illustrates two exemplary

66

2.2 Cognitive Spacetime

Figure 2.16: learning trajectories in a space of k = 3 meta-
data dimensions (a1, a2, a3)

trajectories in a Cognitive Spacetime which consists of three
spatial dimensions. Similar learning trajectories can be iden-
tified by calculating a distance measure for them. In the most
intuitive case this is the average euclidean distance between
two trajectories. For example we can search for a number of
trajectories that are closest to a particular trajectory. More-
over, we can partition the Cognitive Spacetime into logical
subspaces which we can utilize for certain analysis strategies.
A good method in this sense is to look for correlations between
subspaces. In other words: we can determine if spatial near-
ness in a subspace correlates to spatial nearness in another
subspace.

67

2 Adaptivity in E-Learning

Subspace Partitions

I have outlined that there are three different types of meta-
data: those which only describe properties of the learning ob-
jects (LO properties), those which describe characteristics of
learners (learner properties) and those describing learners’ at-
tributes with respect to specific learning objects (learner/LO
properties). These three types can be considered as subspaces
in the feature space. We can therefore look at the Cognitive
Spacetime in different ways obtaining different meanings. We
can either look at the Cognitive Spacetime as a whole includ-
ing all dimensions or we can work with projections reflecting
only the LO properties, the learner properties or the learn-
er/LO properties.

The subspace of LO properties primarily describes properties
related to learning content. However, in a mediate way they
provide information about a learner. Let us think of an ad-
vanced learner belonging to a particular profession group who
prefers text-based content. If the learner is free to choose from
the learning material her preferences will probably converge to
content that is annotated with the according meta-data. In
the previous paragraphs I explained the concept of a learner’s
cognitive position. Although LO properties refer to learning
objects they should also be considered as being related to the
learner because it represents her position in Cognitive Space-
time.

In contrast to LO properties the subspace of learner properties
clearly describes traits and characteristics that are related only
to the learner. Finally, The subspace of learner/LO properties
bridges both learner and LO related properties.

The outlined division into subspaces is actually a question of
definition and interpretation. Technically all dimensions exist
in one space whereas subspaces are only obtained by partial
projection. We can of course create any form of individual

68

2.2 Cognitive Spacetime

subspaces with any meaning. For example the big five person-
ality traits and the Kolb learning styles may be regarded as
a ”personality” or ”cognition” subspace. Information about
the bandwidth of a learner’s internet connection could be sub-
sumed under a ”technical” subspace. It depends on the analy-
sis strategy which subspaces are useful. Anyway, correlations
of subspaces can yield interesting information: if phenomena
in one subspace are related to phenomena in another sub-
space this results in simultaneously occurring spatial nearness
in both subspaces. This impacts directly the results of near-
est neighbor searches. If two subspaces strongly correlate, a
nearest neighbor search will provide similar results in both
subspaces.

Learning Pathway Modeling

We can utilize cognitive position vectors to model hypotheti-
cal learners and their equally hypothetical movements through
the Cognitive Spacetime. We can either use this to generate
learning recommendations or to validate ideas of learning be-
havior. For this purpose we model a hypothetical learner and
her behavior by a time-related sequence of cognitive position
vectors with hypothetical values on their Cognitive Spacetime
dimensions.

The cognitive positions of the hypothetical learner may be de-
fined by real representative learning objects or by hypothetical
learning objects with some particular properties. Such a tra-
jectory can be used for two purposes: We could use it as a
reference trajectory in order to recommend learning objects
to a learner who is close to this trajectory. This may be use-
ful for teachers if they want to recommend default learning
pathways to learners. Alternatively we can understand the
trajectory as an assumption about a specific type of learner

69

2 Adaptivity in E-Learning

and we can find out if learners who are similar to that type
really exist in a data set of real learners.

Learning Recommendation Scenarios

With the help of the Cognitive Spacetime we could consider
some interesting questions. A possible scenario may be the
following: suppose, we track learners locations. We could do
this by resolving their IP to geographic locations and networks.
Furthermore, let us observe how frequently they use chats and
forums. We may now determine if learners with certain traits
do more often socialize with other learners either by meeting in
the same location or using chat and forum functionality more
frequently. We could also determine if such behavior corre-
lates with certain types of learning objects and achievements.
Such perceptions may induce individual recommendations for
learners.

For example an intelligent learning environment can predict
a learner’s behavior by finding similar trajectories of other
learners and recommend appropriate learning material. We
could also identify potential learning partners and groups who
have similar traits and trajectories in the Cognitive Spacetime.
Such recommendations can also consider a learner’s current
physical location preferring those potential partners who are
most similar in the subspace of geographic coordinates. Po-
tential partners could then be recommended to meet either
physically or online. This example shows that we can use the
Cognitive Spacetime model to improve learning with regard
to not only cognitive but also social processes and features.

Respective recommendations may either be generated by a
software system or they may be made by a human tutor an-
alyzing the data. The INTUITEL system which I described
in section provides a telling example how textual recommen-
dations can be integrated seamlessly into existing learning en-

70

2.2 Cognitive Spacetime

vironments (see section 2.1.1). The developers of INTUITEL
implemented plugins for common Learning Management Sys-
tems like Ilias, Moodle, Crayons and Clix [39, 41, 114, 115].
These plugins use a network-based protocol to communicate
with an external engine that generates the recommendations.
Interestingly, it is not overly important if the recommenda-
tions are generated algorithmically or if they are conceived by
a human. In the INTUITEL system, recommendations are
calculated by an inference engine in real-time. Instead we can
also think of a system that allows teachers to first analyze
learning trajectories with a software implementation of the
Cognitive Spacetime. Then the teacher may formulate recom-
mendations for individual learners in a software-based recom-
mendation system or simply by mail or — even more simple
— in a face-to-face situation. If the teacher uses a software-
based recommendation approach, the system may store these
recommendations and present them to the learner as soon as
she is online again. Let me give two examples for such recom-
mendations:

Dear learner, I have found that other learners pro-
ceeded with the following course material. . . This
learning material may help you.

Dear learner, I have found that two other learners
of your course have been working on the same topic
and exercises during the last three weeks. They
also are often at the same locations. Would you
like to meet them, so you can learn together?

Both recommendations can be made on the basis of nearest
neighbor searches in the Cognitive Spacetime model. The first
example searches for nearest neighbor trajectories considering
similar learning content. The second example is also based
on a nearest neighbor search. But additionally, it considers
dimensions of the Cognitive Spacetime which are associated
with the learner’s location. In both cases the recommenda-

71

2 Adaptivity in E-Learning

tion offers learning objects to the learner which are contained
by the trajectories of the other learners. This may also con-
sider the chronological order in which learners proceed with
learning material. This way we can predict learning pathways
of learners by looking at similar pathways of other learners in
the past and the way they proceeded from the current cogni-
tive position of the learner in question.

As already outlined, recommendations of this type can be
made by humans but we can imagine that they can also be
transformed into algorithms. We can even think of a hybrid
system providing both automatically generated and human-
given recommendations. An even more powerful hybrid solu-
tion may be a platform that allows human teachers to define
their own procedures for automated recommendations. Figure
2.17 summarizes possible architectures.

In the end this facilitates a form of human machine symbiosis
which is shaped by a triad. The triad consists of the learner,
the teacher and the machine. The machine serves as an ana-
lyzing and executing instance. The teacher uses it to find sim-
ilarities between learners and instructs the machine to instruct
the learner. In case of the Cognitive Spacetime it is also the
teacher who defines the dimensions of the model. The teacher
owns the didactic expertise and he determines both the sim-
ilarity measures and the recommendations that result from
such similarities. Finally, the machine acts as an intermediate
instance between the teacher and the learner.

2.3 Spatio-Temporal Databases

In the previous section I described how learners and their per-
sonal traits, characteristics, individual parameters as well as
their learning contents are transformed into spatio-temporal
trajectories in the Cognitive Spacetime model. The key idea

72

2.3 Spatio-Temporal Databases

Figure 2.17: Application scenarios for the Cognitive Space-
time with teachers and learners

73

2 Adaptivity in E-Learning

behind the Cognitive Spacetime is born from the following as-
sumption: once we obtain trajectories as purely geometric ob-
jects in a spatio-temporal representation, we can make use of
a large pool of algorithms and data structures that have been
developed in the field of spatio-temporal databases (STDB). A
major achievement of the work which I present here is based on
the fact that problems related to learning analytics can now
be accessed with methods of the STDB domain. Moreover,
this addresses a central problem in learning analytics: namely
the complexity and heterogeneity of variables which was of-
ten seen as an obstacle that is difficult to overcome. Because
all data is abstracted to geometric structures and relations,
the Cognitive Spacetime allows us to combine data from vari-
ous kinds and sources. Similarity measures are based only on
spatial and temporal relations.

Let me stress that existing data structures and algorithms for
STDB are mostly motivated from the area of geo-informational
Systems (GIS) which by nature deal with real-world moving
objects like vehicles, humans, or weather phenomena. These
objects are located in a 2D or 3D space while the Cognitive
Spacetime model constitutes a potentially high-dimensional
space. We can therefore not simply apply existing methods.
Instead we have to identify those techniques which are appli-
cable for high-dimensional problems and optimize them.

Despite the dimensionality problem — which is indeed solvable
— learners’ movements through Cognitive Spacetime result in
trajectories that are predestined to be modeled with a spatio-
temporal database (STDB). Database systems are especially
designed for the management of large data sets. They use
special indexing techniques in order to have large data sets
searched and analyzed very efficiently in time. In principle,
this is also the case for spatio-temporal databases. But their
indexing techniques and search algorithms are optimized for
geometric objects end temporal information about these ob-
jects.

74

2.3 Spatio-Temporal Databases

Research and implementations of STDBs mainly origin from
the field of geo-informational systems [1]. A possible query
might be the following (based on examples in [52]):

Dear database, give me the names and routes of all helicopters
that will pass the area of storm ‘Cathrina’ within the next two
hours.

The result would be a table containing some helicopter names
and their routes in the form of trajectories.

Applying this to learning histories we could analogously pro-
cess the following query:

Dear database, take the latest 10 LOs processed by learner
‘Maria’. Give me the names and the learning trajectories of
three other learners who are closest to these 10 LOs and who
have achieved the highest grades in the LO identified by ‘final
exam’.

This query could be the basis for learning instructions that
recommend the learning pathways of other learners who have
worked on similar learning objects and who were especially
successful in a final exam. The exam itself may also be a
learning object in the learning environment for which person-
alized meta-data exist telling us about a learner’s score on
that test.

The above query is formulated with natural language. STDBs
provide query languages often as a variant or super set of SQL
[21, 34, 35, 51]. These query languages include spatial and
temporal logic as well as according operators and predicates.
In contrast to standard databases, STDBs implement index-
ing structures and querying algorithms that are optimized for
spatio-temporal objects and logic.

There exist various research projects and implementations of
spatio-temporal databases. STDBs can be subdivided into
temporal databases which focus on the time dimension, spa-

75

2 Adaptivity in E-Learning

tial databases only considering spatial dimensions and spatio-
temporal databases dealing with both spatial and temporal
dimensions.

A summary of temporal database implementations is provided
by Böhlen in [14]. Purely temporal databases are for example
the ARCADIA database for clinical applications [25], Calanda
for time series with financial data [31, 94], ChronoLog running
on top of a standard Oracle database [13], HDBMS [92, 93],
TDBMS [110] and finally TimeDB for general purpose which
is based on the ATSQL query language [15, 16, 48, 62, 104].

The field of spatio-temporal databases is mostly dominated by
geographical information systems (GIS), network and facility
management, land information systems (LIS) and image pro-
cessing [1]. For example GRASS GIS [81] and GeoToolKit [8]
are geographical information systems while the CONCERT
database focuses on management of raster images [88, 89].
The SECONDO database is a multi-purpose system for spatio-
temporal data [26, 49].

Depending on the meta-data descriptions of the learning envi-
ronment, the spatio-temporal model underlying the Cognitive
Spacetime may consist of a high number of spatial dimensions.
Due to their scope of application most STDBs consider only
two or three spatial dimensions. An exception is the DEDALE
database which is based on a constraint database technique.
This constraint-based approach describes spatio-temporal ob-
jects as point sets which are defined by logical constraints
[45, 90]. With this concept a trajectory can be defined as an
infinite point set which is described by a hyper-polyline. Each
segment of this hyper-polyline is defined as a piece of a straight
bounded by a particular interval. For example the following
constraints define a trajectory as illustrated by figure 2.18:

76

2.3 Spatio-Temporal Databases

1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

x

y

Figure 2.18: 2D trajectory defined by constraints

(y = 2x+ 1 ∧ 1 ≤ x < 2)

∨ (y = 5 ∧ 2 ≤ x < 3.5)

∨ (y = −0.5x+ 6.75 ∧ 3.5 ≤ x < 6.5)

∨ (y = 2x− 9.5 ∧ 6.5 ≤ x < 8)

∨ (x = 8 ∧ 7.5 ≤ y < 8)

Indeed, the DEDALE system can be used for a high number
of dimensions [46, 47]. The constraint-based approach is very

77

2 Adaptivity in E-Learning

useful for spatial objects in the form of infinite point sets.
Database queries that work on such constraint-based repre-
sentations can be implemented with relational algebra. The
result of these queries are also infinite point sets in the form of
constraints. However, in the Cognitive Spacetime the objects
in question are trajectories for which particular characteristics
are more important. Trajectories are interpolated sequences of
ordered points and have to be treated as connected objects. In
order to operate on trajectories efficiently, we should be able
to address trajectories as coherent objects. This implies that
there must be special preservation mechanisms which iden-
tify a single segment with the trajectory it belongs to. Es-
pecially for spatio-temporal indexing this kind of trajectory
preservation becomes important as segments should not only
be indexed with respect to their spatio-temporal location but
also considering the trajectories they belong to. therefore, the
DEDALE database is not the optimal candidate.

2.3.1 Spatio-Temporal Indexing

In order to search and analyze large data sets, databases im-
plement indexing techniques to enable fast and efficient search.
The overall strategy of indexing is to pre-structure the search
space and to subdivide the search into a rough preliminary
step and a final refinement process. A desired goal is that the
duration of a database search does not suffer to much from
the amount of data that is stored in it. This is true for classi-
cal databases and it is also true for spatio-temporal databases
(STDB). Good indexing techniques provide logarithmic time
complexity or even better. Especially in the case of high-
dimensional data a good indexing-technique is a challenging
goal.

Existing research and implementations of spatio-temporal da-
tabases provide various approaches for indexing spatio-temporal

78

2.3 Spatio-Temporal Databases

objects. Most of these techniques are based on the R-Tree fam-
ily [7, 32, 53, 84, 125]. R-trees can index arbitrary geomet-
ric objects like points, point sets, line segments and polygons
by simply defining the minimal bounding boxes of these ob-
jects. A minimal bounding box for an n-dimensional object is
a n-dimensional rectangular of minimal extent containing the
object completely. With R-trees the search space is divided
into a hierarchical organization of bounding boxes in multiple
levels. On the leave level it contains the smallest bounding
boxes which include spatially close geometric objects. On the
levels above bounding boxes are grouped to larger bounding
boxes.

This tree structure allows for an easy implementation of range
searches. For a range search the tree is traversed from the top
to the leaves by selecting those bounding boxes on each level
which are contained or intersected by the range. This may
yield objects that are not or partly contained by the range if
the minimal bounding boxes at the leave level are not com-
pletely in the range of the search. Therefore, a refinement step
is performed at the end to calculate the final result. Figure
2.19 shows an example of an R-tree structure for two dimen-
sions and figure 2.20 shows a partition of bounding boxes in a
3d space.

There are lots of variations and advancements of the R-tree.
For example Gueting et al. list the 3D R-tree, the HR-tree, the
RT-tree and the MR-tree. For moving objects with respect to
the current time and the near future they refer to TPR-trees,
multilevel partition trees, kinetic B-trees and kinetic external
range trees [52].

What indexing techniques are appropriate, strongly depends
on the kind of data and the kind of queries to be performed.
As far as the Cognitive Spacetime is concerned, the queries of
interest refer to past movements. Therefore, indexing methods
which focus on only current movements or the prediction of

79

2 Adaptivity in E-Learning

R1

R3

R4

R9

R11

R13

R10

R12

R16

R15

R14R8

R2

R6

R7

R17

R18

R19

R5

R1 R2

R3 R4 R5 R6 R7

R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19

Figure 2.19: Example of a 2d R-tree (Public Domain,
Wikipedia)

80

2.3 Spatio-Temporal Databases

Figure 2.20: Example of a spatial partition for a 3d R-tree
(Public Domain, Wikipedia)

81

2 Adaptivity in E-Learning

them in the future are not relevant. Also we are less interested
in querying geometric objects representing areas or point sets
as it would be useful in Geographical Information Systems.
Instead the Cognitive Spacetime has to provide queries which
refer to entire trajectories. For the special field of trajectory
indexing there is the Spatio-Temporal R-tree (STR-tree) and
the Trajectory Bundle Tree (TB-tree) [84]. Both are designed
for performing point, range and nearest-neighbor queries as
well as trajectory-based queries [52].

However, there is a significant problem about indexing high-
dimensional trajectories. I have already outlined that search
trees for spatio-temporal data commonly partition their search
space by bounding boxes. The more dimensions are involved,
the more these bounding boxes tend to overlap. As a con-
sequence more sub-branches of the search tree have to be
traversed in order to find a specific object. This makes R-
trees become inefficient in high dimensions. The X-tree which
is derived from the R-tree seems to be optimized better for
multiple dimensions [11]. But actually, the Cognitive Space-
time focuses on spatio-temporal trajectories which own some
particular characteristics separating them from other spatio-
temporal objects. The trajectories in question use to grow in
a monotone way along the time dimension. Trajectory seg-
ments are usually inserted chronologically meaning that an
index structure does not have to be reorganized for past inser-
tions, changes or deletions. This is a feature which especially
characterizes the dynamic structure of R-trees. But in the case
of Cognitive Spacetime this feature is dispensable. We can ex-
ploit this peculiarity to implement an indexing structure that
does not suffer under high dimensions.

A good alternative in this sense is a grid-based index structure
as it was implemented by SETI (Scalable and Efficient Tra-
jectory Index) [17]. SETI uses a two-level structure treating
the spatial and the temporal indexing separately. The spatial
search space is partitioned by static, non-overlapping, spatial

82

2.3 Spatio-Temporal Databases

cells instead of bounding boxes. The grid index approach can
be considered as especially interesting for two reasons: First,
as the temporal dimension is treated separately, we can use an
existing temporal database to index the time dimension. Sec-
ond, the developers of SETI show that their technique ”‘does
not suffer from the curse of dimensionality”’ [17]. Sidlauskas
et al. provide a comparison of tree-based and grid indexes in
[117]. They also studied different parameterizations for the
best performance of both tree and grid index structures.

Figure 2.21 shows an example for a two-dimensional grid in-
dex. The space may be partitioned by different interval lengths
for each dimension. The interval length should be chosen with
respect to the distribution of the data along the according di-
mension. The trajectories are inserted into the index structure
segment by segment. Each segment has to be fit entirely into
one cell. If a segment intersects the boundary of two cells it
is split at the point of intersection.

2.3.2 Spatio-Temporal Queries

Once an index structure is established it provides the foun-
dation for efficient queries. With such queries we can find
similar trajectories and even perform trajectory clustering to
find common learning pathways, behavioral patterns and cor-
relations. The field of spatio-temporal databases provides a
large amount of algorithms. I decided for a carefully selected
set of queries which build on one another. Together they form
a relatively small but a pleasingly powerful hierarchy of queries
with which we can perform both nearest neighbor search and
clustering.

Range Query The simplest query which can be performed is
a range query. Range queries are defined by intervals on each
dimension such that the query conforms to a window in the

83

2 Adaptivity in E-Learning

Figure 2.21: Example of a 2D grid index with two trajectories

84

2.3 Spatio-Temporal Databases

Figure 2.22: 3D range query with two spatial and one tempo-
ral dimension

form of a k-dimensional hyper-rectangle (see figure 2.22). A
range query asks for all objects that lie inside or intersected
by the query window.

Circular Query Additionally, I define the circular query which
is a special form of a range query. It asks for all points which
are at a maximum distance from a point of interest. Its shape
depends on the distance metric we use. If euclidean distance
is used the query equates to a radius r with a respective cir-
cle in 2D and a hypersphere in n-dimensional space. Using
the Manhattan distance or the Chebyshev distance we obtain
hypercubes for n dimensions and squares for two dimensions.
Figure 2.23 shows the shape of a circular query for Manhattan,
Euclidean and Chebyshev metric. If the Chebyshev distance
is applied the circular query can be directly implemented as a
range query with equal interval length on each dimension.

85

2 Adaptivity in E-Learning

Figure 2.23: From left to right: 2D circular query for Eu-
clidean, Manhattan and Chebyshev distance

K Nearest Neighbor Query As the name suggests, a K near-
est neighbor query searches for a number of K objects that
are closest to a point of interest. Basically, a nearest neighbor
query can be understood as a sequence of circular queries with
iteratively growing radius. The iterations stop as soon as K
objects are found within the current radius. Again, the shape
of the query is determined by the distance metric. Prasath et
al. provide an overview of different distance metrics and their
efficiency for nearest neighbor queries [86]. Figure 2.24 shows
a nearest neighbor query for K = 2 with three iterations for
the Euclidean distance and two intersecting trajectories.

Incremental K Nearest Neighbor Query In Cognitive Space-
time we are mostly interested in distances and nearest neigh-
bor relationships between trajectories. Trajectories can be re-
garded as interpolated point sets. Therefore, nearest neighbor
relationships between trajectories can be approximated by an
incremental sequence of nearest neighbor queries. A trajec-
tory can be approximated by a sequence of points along the
trajectory: T = p1, p2, . . . , pn. We can implement queries that
apply a K + δ nearest neighbor query for each pi whereby δ is
an estimated parameter to ensure that the accumulated result
contains all K nearest neighbors. Figure 2.25 illustrates such

86

2.3 Spatio-Temporal Databases

Figure 2.24: 2D circular K nearest neighbor query for K = 2
and Euclidean distance

87

2 Adaptivity in E-Learning

Figure 2.25: incremental nearest neighbor query with three
sample points

an incremental query with three sample points. The algorithm
was introduced by Chen et al. in [20]. They also provide an
estimation strategy for δ. Moreover, Chen et al. enhanced
their method to also consider the ordering of the query points
along the trajectory. They achieve this by applying the single
nearest neighbor queries in a recursive strategy.

Besides Chen et al. there are various methods to perform
nearest neighbor queries on trajectories. Many of them are de-
signed to work on R-trees or on variations of them [91]. Some
of them are developed for grid index structures [54, 121, 123].
It also makes a difference if near trajectories are supposed to be
found with respect to a single query point (point-to-trajectory
relation) or with respect to an entire trajectory (trajectory-to-
trajectory relation). The algorithm by Chen et al. can be used
for both types of queries. The query object, to which nearest

88

2.3 Spatio-Temporal Databases

trajectories are supposed to be found, may be a single point.
This is just a special case of the algorithm for which the list of
query points contains only one object. In general, algorithms
for nearest neighbor relations are not trivial when both the
query object and the neighbor objects are trajectories. This is
because the computational effort increases massively. Choos-
ing some representative points from the query trajectory and
applying an incremental nearest neighbor search may provide
a good approximation. It is also a good compromise regarding
computational complexity and precision.

Let me give a brief impression of the work of other researchers.
Gao et al. propose two algorithms based on an R-Tree which
can find nearest neighbor trajectories with respect to a static
query point [42]. Güting et al. describe a method based on
a 3D-R-tree in [50]. Frentzos et al. propose depth-first and
best-first algorithms which are also based on R-Trees [37, 38].
Their algorithms work either for stationary or moving query
points. Xia et al. introduce a technique which uses a grid
index [121]. It is built on the MapReduce Framework [27]
which is a programming paradigm for parallel computing on
computer clusters. So, Xia et al. solve the problem of com-
putational complexity by parallelization. In [54] Hasan et al.
discuss continuous nearest neighbor queries. They do not deal
with query objects in the form of historical trajectories but in
the form of continuously updated queries which is relevant for
the observation of movements in real time. Their publication
has some relevance to the work presented here, because they
use a hierarchical grid index which they call ”grid-tree”. This
grid tree uses multiple levels of successively refining grids for
better query performance. In a similar way Zheng et al. also
use a hierarchical grid index structure for trajectory similarity
queries [123].

89

2 Adaptivity in E-Learning

2.3.3 Clustering

There exist various approaches for the clustering of trajecto-
ries. For example Byoung-Kee Yi et al. deal with similar-
ity patterns in time sequences [122] considering time warping
techniques. In addition to this, the work of Vlachos et al. can
be mentioned, who propose similarity functions to find longest
common subsequences (LCSS) among trajectories [116]. They
show that their technique is especially appropriate for data
with noise.

In [82] Pelekis et al. provide distance operators to find similar
routes within the same time period or without the time di-
mension. The latter case considers only the spatial projection
of trajectories. Additionally, they introduce derived similarity
metrics based on speed and directional patterns. To calcu-
late the similarity of trajectories, they use the area which is
enclosed by the projection of two trajectories in a 2D plane.

Kalnis et al. subdivide moving objects by time slices [63].
Each time slice is a snapshot of frozen points. These points
are clustered applying the DBSCAN algorithm [36]. Kalnis et
al. also adopt several optimization techniques which includes a
method they derive from MPEG-2 video encoding. They treat
time slices like video frames and approximate intermediate
time slices to reduce the computational effort.

Nanni and Pedreschi address the idea that not all time inter-
vals may have the same importance for clustering [80]. Their
work is based on the OPTICS algorithm (Ordering Points To
Identify the Clustering Structure) [4] which is an enhanced ver-
sion of the DBSCAN algorithm (Density-Based Spatial Clus-
tering of Applications with Noise) [36]. In [80] Nanni and Pe-
dreschi adopt clustering with respect to multiple possible time
intervals choosing the most significant result. They apply this
to traffic and transportation patterns. But we can also trans-
fer this to learners. Time periods shortly before exams will

90

2.3 Spatio-Temporal Databases

have another meaning than other time periods and students
will probably show different behaviors and clusters. Another
approach in this sense is provided by the work of Jae-Gil Lee
et al. who focused on similar sub-trajectories [69].

An interesting approach uses discrete Fourier transformation
to map trajectories into a feature space of lower dimension.
Agrawal et al. introduce this method stressing that the first
few frequencies are sufficient to obtain good results of similar-
ity queries [2].

A general survey of clustering techniques is included in a pub-
lication by Kisilevich et al. [65]. Amongst other methods
they summarize distance-based and density-based clustering,
visual-aided and pattern-based techniques.

However, in a rather straight forward way clustering can be
performed simply on the basis of nearest neighbor queries.
Imagine some clusters of spatial objects. If the parameter
K of a K nearest neighbor query is sufficiently small it will
mostly or even only provide nearest neighbor points from in-
side a cluster, no matter which point of reference is chosen.
This indicates that we can obtain information about clustered
objects by applying multiple nearest neighbor queries in some
intelligent way. This works for point sets as well as for tra-
jectories if the functionality of a nearest neighbor query is
available.

I briefly explain two clustering methods which are based on
nearest neighbor queries. The first technique is the nearest
neighbor chain algorithm [78, 79]. It starts from an arbitrary
point and successively constructs a nearest neighbor graph
from it. This is a directed graph connecting consecutive near-
est neighbors. When two points are reciprocal nearest neigh-
bors they are clustered and replaced by the center of the clus-
ter. The procedure is then repeated starting from the last
point before the two reciprocal points. This way clusters de-
velop step by step.

91

2 Adaptivity in E-Learning

Figure 2.26: Shared nearest neighbor graph for K = 2

The nearest neighbor chain algorithm works for points. In
principle we could think of building it also from nearest neigh-
bor queries with trajectories. However, the algorithm replaces
reciprocal nearest neighbor points by their center. Applying
this to trajectories is not trivial because some kind of center
trajectory would have to be constructed and it is not clear how
this can be implemented. Instead I suggest another algorithm
which is called the shared nearest neighbor algorithm [33, 61].
It performs an agglomerative hierarchical clustering which is
based on a very particular similarity measure. Instead of using
a classical distance measure the algorithm looks for the num-
ber of nearest neighbors two points have in common. Based
on this, the algorithm builds a shared nearest neighbor graph.
This is an undirected graph the edges of which are weighted
by the number of shared nearest neighbors.

Figure 2.26 shows an example for a graph which is built from
K nearest neighbor queries withK = 2. Dotted lines represent
two shared neighbors and straight lines represent three shared
neighbors whereby this also includes the respective point as
its own nearest nearest neighbor. This graph can be repre-
sented by a similarity matrix assigning each pair of points the
according weight. This matrix can then be used to perform
clustering. the values of this matrix can directly be obtained
from a K nearest neighbor query. It therefore can be applied

92

2.4 Adaptivity Cycle

not only for points but also for trajectories or any other form
of object as long as the functionality of a nearest neighbor
query is available.

Another conceivable approach is to use a grid index structure
to find clusters of objects. For each cell in the grid index we
can easily store statistical information like the number of tra-
jectory segments which are located in that cell. This leads
directly to a density measure for each cell. We can use this
information to find connected regions of high density which
is equivalent to finding spatio-temporal clusters. Two repre-
sentative algorithms for this approach are the CLIQUE (Clus-
tering In QUEst) [3] and the STING (Statistical Information
Grid) [119] algorithm. A comparison of the two algorithms
was given by Suman and Rani [107].

Both the CLIQUE and STING algorithm are originally de-
signed for clustering point sets. However, it does not make
a difference if the objects of interest are points or single tra-
jectory segments. In any case, such a grid-based clustering
algorithm can be used to find regions in the Cognitive Space-
time which are traversed by learners frequently and with high
density. Figure 2.27 illustrates a possible result of grid-based
clustering in a two-dimensional grid of trajectories. As figure
2.27 shows, this technique is especially useful if we want to
find trajectories that share common sub-trajectories.

2.4 Adaptivity Cycle

In section 1.6 (Adaptivity with Turing Machines) I introduced
a universal model for an adaptive algorithm based on the Tur-
ing machine. Let us remember that the Turing machine is
more than just an abstract imagination of a machine. It is a
strong concept telling us what we can implement with com-
puters. Any statement which is based on the Turing machine

93

2 Adaptivity in E-Learning

Figure 2.27: Grid-based clustering

94

2.4 Adaptivity Cycle

is also true for any form of algorithm, no matter from what
kind of technology it is built. Therefore, the model of the
adaptive Turing machine provides us a clear design pattern
for adaptive learning environments. Such a system must in-
clude a knowledge base reflecting both knowledge about the
learning content and the learner. This knowledge base is con-
tinuously updated by outer events. Outer events usually are
actions by the learner or updates of data which are processed
about her. Each update of the knowledge base triggers a new
process of inference thereof.

The result of this inference process may be a recommendation
for the learner. The learner’s reaction on this recommendation
will again trigger the next update of the knowledge base. This
leads to an adaption loop which results in a mutual interac-
tion between the learner and the computer: the learner mod-
ifies the knowledge base of the algorithm and the algorithm
modifies the behavior of the learner which again modifies the
knowledge base and so on.

The learning recommendations can be handled in more or less
rigid ways. They can be implemented as strict instructions
which a learner has to follow or they can be handled as non-
binding recommendations. In the latter case the adaptivity
cycle will react in a very accommodating way if the learner
deviates from the recommendation. With each iteration of
the adaptivity cycle, the learners state is reconsidered and
new recommendations are generated.

The all-important question is: what must a knowledge base
and a respective inference procedure look like? Essentially
there is an infinite number of answers. However, if we claim
the system to shape a triangular relationship between learner,
teacher and machine, there is a fundamental criterion such a
system should satisfy. The knowledge base should be com-
prised in a form that is understandable by both humans and
computers.

95

2 Adaptivity in E-Learning

In section 2.1 (Ontologies) I have outlined how ontology lan-
guages can be used to encode semantics according to peda-
gogical and didactic meta-knowledge. I also showed how in
principle machines can infer on such knowledge representa-
tions. While ontologies work well for semantic relations they
are hardly suitable for the representation and analysis of the
historicity of learning behavior. For this purpose I introduced
the model of Cognitive Spacetime.

I furthermore described how spatio-temporal queries can be
used with the Cognitive Spacetime to analyze learning tra-
jectories and find similar pathways among learners. In this
section I will explain how these two processes can be inte-
grated into an adaptivity cycle. Let me stress that this idea
is not limited to ontology-based reasoning or the Cognitive
Spacetime model. The adaptivity cycle is a more universal
concept within which the Cognitive Spacetime and the on-
tology approach may be replaced or enhanced by any other
process.

The adaptivity cycle is subdivided into three parts: the knowl-
edge base update process, the inference process and the gen-
eration of learning recommendations. In the following the re-
spective parts and how they combine Cognitive Spacetime and
the ontology approach are explained.

2.4.1 Knowledge Base

The knowledge base contains a representation of learning ob-
jects and learning histories which is divided into three partial
representations but not limited to them:

• A pedagogical ontology which is built upon semantic an-
notations about learning objects and their didactic in-
terrelations.

96

2.4 Adaptivity Cycle

• A learner state ontology which contains meta-data about
learners and their relations to learning objects in the
pedagogical ontology.

• The Cognitive Spacetime embodying a spatio-temporal
model of the learning objects in the learning environ-
ment and learners’ time-dependent cognitive positions
within that model.

The first two items in this list — the pedagogical and the
learner state ontology — were formulated and implemented
in the INTUITEL project. Refer to section 2.1.1 (Knowledge
Representation) to get more information about the structure
of the ontology and the inference process on it. The third item
— Cognitive Spacetime — was implemented in the form of a
experimental prototype system which is called the ”Hypercube
Database”. I have already outlined the data structures and
the spatio-temporal query algorithms on a theoretical basis.
The concrete implementation of them is explained in chapter
3 (Hypercube Database).

It is evident that the ontology on the one hand and Cogni-
tive Spacetime on the other hand are based on data sharing
similar meanings. Both the ontology and Cognitive Space-
time describe learning material and learners with meta data.
However, the way this is done is fundamentally different in
the two cases. The ontology describes only semantic relations
in the form of ”object X is an instance of. . . ” or ”object X
is related to object Y”. On the contrary, the dimensions of
the Cognitive Spacetime are meta-data in the form of time-
dependent variables which are assigned numeric values. Each
of these variables rates a specific property of learning objects
and learners. The aggregate of all these properties finally con-
stitutes a learner’s specific cognitive position in the Cognitive
Spacetime.

97

2 Adaptivity in E-Learning

2.4.2 Learner-Triggered Knowledge Base
Update

Together the Cognitive Spacetime and the learner state on-
tology contain information about learners. This may include
static or fluid information. Fluid data may be provided by a
learner’s current or latest learning object as well as by mea-
sured parameters like bandwidth, biometric sensor data or ac-
tivity and performance measures of any kind. Static data may
include information about age, educational level, socioeco-
nomic background, personality traits or learning styles. While
static features will not change over time, fluid information has
to be updated continuously. Whenever a learner progresses on
a learning object this should trigger an update of the informa-
tion that is stored in the Cognitive Spacetime and the learner
state ontology.

Within a digital learning environment one can easily track
learners’ activities and send according data to a recording and
recommendation engine. But this is not restricted to a single
learning environment. We can also think of multiple learn-
ing environments feeding a central engine or multiple engines
sharing the same knowledge base. This allows us to support
learners over multiple learning environments. How the track-
ing of learners and the generation of recommendations can
work over different platforms was in principle anticipated by
the INTUITEL system. Initially the INTUITEL prototype
was designed to support one recommendation engine for one
learning management system. But the developers also for-
mulated a network protocol for the information exchange be-
tween the learning management platform and the engine (see
the publication in [39] pp. 62–74). Such a protocol-based ap-
proach appears to be suitable to be extended to a distributed
system landscape.

98

2.4 Adaptivity Cycle

2.4.3 Inference Process

At its core, an inference process can be seen as a stepwise
set reduction of learning objects. The result is a specific sub-
set containing learning objects which are most appropriate
according to a learner’s state and history. This becomes par-
ticularly clear if we look at the inference process as it was
implemented in the INTUITEL system. This was explained
in section 2.1.1 (Knowledge Representation). At the begin-
ning there is a set which contains all learning objects that are
available in a learning environment. By following the semantic
relations in the pedagogical and the learner state ontology this
set is successively reduced by simply excluding those learning
objects which do not fit the required relations.

Applying spatio-temporal queries on learning trajectories in
Cognitive Spacetime can also be understood as such a set re-
duction process. In this case, the result set simply consists of
the learning objects that are part of those trajectories returned
by the respective queries. For all parts of the knowledge base,
including the pedagogical ontology, the learner state ontology
and the Cognitive Spacetime trajectories, this set reduction
can be performed in separate processes. finally, the result of
each reduction process can be combined by basic set opera-
tions. In the simplest form the final result set may be built as
the intersection of all single set reductions.

At the beginning of this section I indicated that the knowledge
base in the adaptivity cycle is not limited by the ontology
and the Cognitive Spacetime approach. Defining the inference
process as a combination of multiple set reductions makes it
extremely scalable and expandable. We can think of any other
method to be included as just another set reduction process
which is illustrated by figure 2.28. For example, deep learning
algorithms could be used to complement the adaptivity cycle.
Especially pattern recognition in time series data — as they

99

2 Adaptivity in E-Learning

Figure 2.28: Inference process as a set reduction result

are the basis of spatio-temporal trajectories — might be an
interesting extension.

2.4.4 Generating Learning Instructions

Before running into the next iteration, the adaptivity cycle
may close with the generation of a learning recommendation.
The input for this step is the result of the set reduction in
the inference process. Basically the output of the set reduc-
tion process is only a set of learning objects. This set has
to be transformed in a human-friendly message. An intelli-
gent recommendation unit may use meta-data descriptions of
learning objects to create more descriptive recommendations.

100

2.4 Adaptivity Cycle

If semantic relationships in the form of an ontology are avail-
able the recommendation unit may even include justifications
telling the learner why a learning object was recommended to
her.

If the learning instructions are implemented as non-binding
recommendations, the adaptivity cycle will be tolerant of users
who ignore single recommendations. With each of the learner’s
activities, a new run through the adaptivity cycle is provoked.
And within each iteration of the cycle the learner’s current
state within the learning environment will be reconsidered.
I have described two possible representations of learners and
their position within a learning environment: an ontology ap-
proach and the Cognitive Spacetime model. With any run
through the adaptivity cycle the learner visits other learning
objects which correspond to new semantic relationships to dif-
ferent parts of the ontology representation. In the Cognitive
Spacetime model, the learner’s deviations from given recom-
mendations will mean that the her cognitive position moves
away from certain trajectories but becomes closer to other tra-
jectories. Both set reduction processes — the ontology based
and the process based on Cognitive Spacetime — will therefore
produce new recommended sets of learning objects. If, on the
other hand, a learner follows recommendations she will con-
verge to parts of the ontology and trajectories in the Cognitive
Spacetime.

If an adaptivity cycle is implemented in the form described
here, it will offer great advantages. Because the adaptivity
cycle is based on a reciprocal influence between the learner
and the machine, it works on the basis of incomplete and un-
certain knowledge. We may start from an even vague image
of a learner and the longer she and the machine interact the
more both the learner and the machine will comply to each
other. This is a fundamental difference compared to user mod-
els which presuppose more or less extensive prior knowledge
about learners’ behaviors.

101

3 Hypercube Database

In Cognitive Spacetime a learner’s history is described by a
n-dimensional trajectory. n denotes the number of meta-data
items which constitute the dimensions of the Cognitive Space-
time. The strength of the Cognitive Spacetime is that it ab-
stracts heterogeneous data to trajectories which are only geo-
metric objects located in a n-dimensional space and a (n+ 1)-
dimensional spacetime respectively. Geometric objects and
Cognitive Spacetime as a whole are predestined to be modeled
with a spatio-temporal database (STDB). I already outlined
that the Cognitive Spacetime was implemented in the form
of a prototype database system which I call the ”Hypercube
Database”. The name alludes to the concept of the INTUI-
TEL Hypercube because it provided the idea for the Cognitive
Spacetime. This chapter provides a detailed description of the
Hypercube Database and its implementation.

The Hypercube Database is implemented as a Java applica-
tion. It consists of four sub-modules which are the Database
Access Module, the Vector Module, the Hypercube Module and
the API. Figure 3.1 shows the overall software design of the
system.

3.1 Database Access Module

The Database Access Module encapsulates the functionality
of a TimeDB back end. The TimeDB back end is an external

103

3 Hypercube Database

Figure 3.1: Architecture of the Hypercube Database

104

3.2 Vector Module

Java Component which is used for the temporal dimension of
the Cognitive Spacetime. The Database Access Module pro-
vides an interface for performing basic database functions like
opening or closing a database connection to TimeDB. Fur-
thermore, temporal queries can be executed using the ATSQL
query language [15, 16, 48, 62, 104]. ATSQL queries are dele-
gated to the TimeDB module. In principle, the TimeDB back
end can be replaced by another temporal database. As long
as the respective temporal database implements the ATSQL
query language other components which use the Database Ac-
cess Module are not affected.

3.2 Vector Module

The Vector Module uses the interface of the Database Ac-
cess Module. Its task is the transformation of single mea-
suring points into time-dependent vectors. These vectors are
synonymous with the cognitive position vectors in the Cogni-
tive Spacetime. The Vector Module uses the Database Access
Module to store representations of these vectors in the Time
DB back end. Each attribute of such a vector is equal to one of
the n dimensions in Cognitive Spacetime. More specifically, a
vector attribute is the time-dependent value of a specific meta-
data item. Each meta-data item may be updated at arbitrary
discrete time points.

Consider an individual learner for whom the values of n vari-
ables are measured at arbitrary points in time. We regard
the lastly measured value as valid until it is updated by a
new value. The event of an attribute update is called ”mea-
suring point” and is formed by a quadruple mp=(trajectory,
attribute, value, time) identifying the learner (trajectory), the
attribute name, the update value of the attribute and the time
point of the update. The listing below describes how measur-

105

3 Hypercube Database

ing points are transformed into cognitive position vectors. It
illustrates the insertion of attribute updates and the time-
dependent evolution of the vectors for a three-dimensional
Cognitive Spacetime containing three respective meta-data
items. In the following I use the term ”attribute” synony-
mously for meta-data item. the three attributes are denoted
as a1, a2 and a3.

Before the first update all attributes have an initial value —
for example 0 — from start to eternity.

a1 = 0 for t ∈ [0, forever)

a2 = 0 for t ∈ [0, forever)

a3 = 0 for t ∈ [0, forever)

Suppose that three measuring points for one individual learner
are inserted at three different time points t1, t2 and t3:

a2 = 3 at t1
a2 = 5 at t2
a1 = 7 at t3

After these updates the cognitive position vector has the fol-
lowing time-dependent values:

a1 =

{
0 for t ∈ [0, t3)
7 for t ∈ [t3, forever)

a2 =

 0 for t ∈ [0, t1)
3 for t ∈ [t1, t2)
5 for t ∈ [t2, forever)

a3 = 0 for t ∈ [0, forever)

106

3.2 Vector Module

Figure 3.2: Example 3D-vector with three updates

Figure 3.2 illustrates the update procedure and the resulting
time lines of the three attributes a1, a2 and a3. The Hyper-
cube Database includes functionality to visualize such time
lines. The output is a color map for every trajectory. I have
introduced this in section 2.2.1 (Worldlines of Learning). For
clarification have again a look at an example as shown in figure
3.3. This visualization shows the vectors of three learners on
a video platform and includes four variables for each learner.
The time-dependent values of the attributes are encoded by
colors. Essentially, figure 3.2 and 3.3 are equivalent represen-
tations of cognitive position vectors as trajectories.

The two figures also illustrate that time-related updates refer
to single attributes. The TimeDB back end does not pro-
vide temporal support for single attributes. instead it only
supports temporal functionality for complete database tuples.
Therefore the Vector Module also implements a mapping to
support attribute-wise temporal support. This is achieved by
storing each attribute of each vector separately and associat-
ing it with the related vector by foreign key relations. It is
the Vector Layer which joins single attributes to vectors at
the time when queries are performed. For a more detailed
description of the TimDB database schema see section 3.5.2
(ATSQL Representation).

107

3 Hypercube Database

Figure 3.3: mobile users on a video platform (see section 2.2.1)

3.3 Hypercube Module

The Hypercube Module incorporates the actual model of the
Cognitive Spacetime. The Vector Layer which was previously
described, only manages vectors and their time-dependent at-
tributes. Alone, these vectors do not yet represent trajecto-
ries. They can be regarded as trajectories when recorded over
time but they are not yet real geometric objects. Transform-
ing vectors into such geometric objects is therefore the spe-
cial task of the Hypercube Module. The resulting trajectories
are hyper-polylines which are built from linearly interpolated,
interconnected segments. Beyond this, the Hypercube Mod-
ule is in charge of spatial indexing and the implementation of
spatio-temporal queries.

3.3.1 Trajectory Segments

Single attributes of a vector v(t) = (a1(t), a2(t), . . . , an(t))
may contain non-simultaneous measuring points which is il-

108

3.3 Hypercube Module

Figure 3.4: Transformation of vectors to segments

lustrated by figure 3.2. However, single trajectory segments
are formed by the smallest time intervals which have no mea-
suring points inside them. In order to group attribute time
lines of a trajectory and to split it into segments the Hyper-
cube Module performs a mapping as it is illustrated by figure
3.4.

The Vector Module represents its vectors by default as period-
wise constant values. In order to built spatio-temporal trajec-
tories from interconnected segments, it is necessary to inter-
polate the measured values. For this purpose, attribute val-
ues between two segment endings are interpolated by a linear
function on each dimension. The interpolation does not take
place persistently in the database. Instead, the database only
stores non-interpolated data which is dynamically interpolated
at the moment when spatio-temporal queries are performed.
Note that one could also choose any other form of interpola-
tion. For example we could also think of polynomial functions
or even spline curves. However, linear interpolation is a good
compromise between computational effort and approximation.

109

3 Hypercube Database

3.3.2 Spatial Indexing

The foundation for any form of spatio-temporal queries is an
efficient indexing technique. In section 2.3.1 (Spatio-Temporal
Indexing) I provided an elaborate discussion on multiple in-
dexing techniques. I concluded that common index structures,
which are based on the R-Tree family [7, 32, 53, 84, 125] are
not appropriate for Cognitive Spacetime because their perfor-
mance decreases significantly in high dimensions. The Hyper-
cube Module therefore implements a grid index which is sim-
ilar to the idea presented by the authors of the SETI project
[17].

When trajectory segments are inserted into the grid, any seg-
ment is located completely inside a grid cell. If a segment in-
tersects several grids, it is split into child segments such that
every child segment lies within a cell. The splitting of seg-
ments costs computation time at the point of insertion. But
on the other side a grid index has high advantages when it
comes to the execution of search queries. The advantage of
the grid index is explained best on the basis of a range query.
In an R-Tree a range query is performed by traversing the
tree and searching those bounding boxes which are contained
or intersected by the query range. Bounding boxes may over-
lap which results in the traversion of multiple branches of the
tree. Especially in high dimensions the overlapping volumes of
the bounding boxes grow massively causing efficiency declines
of the search process.

Conversely, in a grid index, the equivalent of a bounding box
is a grid cell. But those grid cells are not organized in a
search tree and they do not overlap. Instead, they are static
and directly addressed. Each cell has the same size which
is specified by the interval length on each dimension of the
Cognitive Spacetime. Each cell is therefore defined by its lower
and upper boundaries in space. Given a point in that space

110

3.3 Hypercube Module

we can tell immediately from its coordinates in which cell it
is located. This also applies to range queries. Given the lower
and upper bound of a range query on each dimension we can
directly compute the affected cells.

Figure 3.5 shows an example for a range query on a two-
dimensional grid with an exemplary trajectory intersecting the
range. The thick dashed rectangle represents the query win-
dow and the gray area comprises the affected grid cells. When
a range query is performed the outer bounds of the query win-
dow define the coordinates of the cells that edge the area of
interest. It is straight forward to compute all cells lying inside
the area. Segments which are associated with the found cells
can immediately be retrieved without further computation.

It must be noted that the number of cells can become very
large if the query window is large and the grid has a high
number of dimensions. This may even lead to a combinatorial
explosion. However, this problem can be solved by applying
a hierarchical grid index. This advanced version consists of
multiple grids with different cell sizes. On the highest level
the grid is very coarse and has large cells. At lower levels the
grid becomes finer and cells become smaller. this is shown in
figure 3.6. The size of the query window determines which
grid index is used. If the query window is large a coarse grid
is chosen. If the query window is of small extend a finer grid is
applied. The prototype of the Hypercube Database does not
implement a hierarchical grid index. It uses only one grid level
but adding more levels may be a useful and easy extension.
An example of such a hierarchical grid index is given by Hasan
et al. [54] and Zheng et al. [123].

3.3.3 Query Implementation

The TimeDB back end provides temporal indexing as well as
temporal queries. Based on the TimeDB back end and the

111

3 Hypercube Database

Figure 3.5: 2D Grid index and a range query (thick dashed
rectangle)

112

3.3 Hypercube Module

Figure 3.6: Hierarchical Grid Index

113

3 Hypercube Database

grid index structure described above, the Hypercube Module
implements spatio-temporal queries for trajectories. For the
spatial part, any query is divided into two steps: a cell-based
query and a refinement step. In the first step the query com-
putes all cells of the grid index which lie within the query
range and which are intersected by it. Then all trajectory
segments contained by these cells are returned. The result set
of this step may contain segments which are located outside
the actual query window. In the refinement step the exact po-
sitions of the segments are calculated and segments outside the
query window are rejected. As any segment is associated with
the trajectory it belongs to the query returns both affected
segments and trajectories.

Implemented Queries

The concrete queries which are implemented in the Hyper-
cube database were already explained in detail in section 2.3.2
(Spatio-Temporal Queries). A short overview is listed below.

Range Query This is the basic query from which the more
sophisticated queries listed below are developed. It defines
search intervals on each dimension of interest and results in a
query window in the form of a hyper-rectangle.

Circular Query The circular query asks for objects which
are at a maximum distance from a point of interest. In the
Hypercube Database it is implemented with the Chebyshev
distance metric by which we obtain a query window in the form
of a hypercube. Using the Chebyshev distance the circular
query can be directly applied as a range query with equal
interval length on each dimension.

114

3.3 Hypercube Module

K Nearest Neighbor Query The K nearest neighbor query
is implemented in the form of subsequent circular queries with
iteratively growing radius. As the circular query uses the
Chebyshev metric this accords to hypercube-shaped range queries
with iteratively growing edge length. The iterations stop as
soon as K trajectories are found.

Incremental K Nearest Neighbor Query Using a simple Near-
est Neighbor Query we can only find trajectories that are clos-
est to a specific point in space. In order to find nearest neigh-
bors which are closest to trajectories the system performs an
approximation by an incremental sequence of nearest neigh-
bor queries. Sample points are selected from the trajectory of
interest. Then nearest neighbor queries are applied for each
sample point.

Chebyshev versus Euclidean Distance

In the Hypercube Database the range and circular query were
implemented using the Chebyshev distance metric. This is
also the case for the nearest neighbor queries as they are built
from incremental circular queries. Actually any distance met-
ric is possible. More information about this can be found with
Prasath et al. who provide an overview and analysis consid-
ering the efficiency of different distance metrics for nearest
neighbor classification [86].

Classical spatio-temporal databases and algorithms often use
the Euclidean metric. This is because they usually deal with
two or three-dimensional real world objects for which the Eu-
clidean distance is an intuitive measure. However, the Hyper-
cube Database deals with abstract objects in a high-dimen-
sional space. Therefore, there is no universal argument for
a specific distance metric. The Chebyshev distance was cho-
sen because the circular query and the derived nearest neigh-

115

3 Hypercube Database

Figure 3.7: 2D Grid index and three iterations of a nearest
neighbor query with Chebyshev metric

bor query can be implemented very simple on a grid index
with rectangular structure. If the grid cells are square-shaped
the implementation of nearest neighbor queries becomes ex-
tremely simple. In the Hypercube Database nearest neighbor
queries are built from incremental circular queries with iter-
atively growing radius. With square-shaped cells, increasing
the radius can be achieved by just adding a certain number of
grid-cells on each dimension and in each direction. With each
iteration only the extended cells around the previous search
range are considered as the content of the previous cells is al-
ready known. Figure 3.7 shows three such iterations on a grid.
The radius is increased by one cell per iteration.

Although the current version of the Hypercube Database works
with the Chebyshev distance it can be extended by any other
metric. The only thing that has to be changed is the con-
struction of the circular query. For the Euclidean metric the
neighborhood to be searched is constrained by a circle in 2D
or a hypersphere in multiple dimensions. Cheema et al. pro-
pose nearest neighbor algorithms called ”Circular Trip” and
”Circular Arc Trip” [18, 19]. These algorithms also work with
iteratively growing radius but they calculate those cells which
intersect with a real circle. Figure 3.8 shows three iterations
of a nearest neighbor query around a point object using the
Euclidean distance and the affected cells on a grid index.

116

3.3 Hypercube Module

Figure 3.8: 2D Grid index and three iterations of a nearest
neighbor query with Euclidean metric

Trajectory Clustering

An algorithm for trajectory clustering was not implemented
in the Hypercube database prototype. However, the existing
implementation can easily be extended for clustering by using
the techniques I described in section 2.3.3 (Clustering). There,
I introduced the shared nearest neighbor algorithm [61]. This
algorithm can be easily built from the nearest neighbor algo-
rithm, which is implemented in the Hypercube Database. The
already existing nearest neighbor search can be used to deter-
mine the number of common neighbors that are shared by two
trajectories. This metric then serves as a similarity measure
for clustering.

Furthermore, I mentioned the CLIQUE (Clustering In QUEst)
[3] and the STING (Statistical Information Grid) [119] algo-
rithm. Both algorithms can use the information that is stored
in the grid index to find regions in the Cognitive Spacetime
which are densely covered by trajectories. In contrast to the
shared nearest neighbor algorithm, these algorithms are the
better choice if you intend to find trajectories that share com-
mon sub-trajectories but which may be different in other parts.

117

3 Hypercube Database

3.4 REST API

The functionality of the Hypercube database is accessed over a
REST interface which is accessible using the HTTP protocol.
The REST API provides the following methods:

• insertion of measuring points

• listing vectors

• visualization of vectors as color maps

• grid index creation

• spatio-temporal range and nearest neighbor queries

The following sections explain these REST methods in more
detail.

3.4.1 Insertion of Measuring Points

The insertion of measuring points comprises two steps: prepar-
ing measuring points and submitting them. The REST call
”/measuringpoint/prepare” puts a single measuring point into
a queue, while the method ”/measuringpoint/submit” finally
inserts all queued measuring points into the database. This
allows for efficient bulk insertion of large sets of measuring
points and is useful if measuring points are inserted from al-
ready collected data from another data source. If measuring
points are inserted from a live system the submit call may be
sent immediately after every single measuring point prepara-
tion.

<REST END POINT>/measur ingpoint / prepare \
? t r a j e c t o r y=<t r a j e c t o r y name> \
&name=<a t t r i b u t e name>&value=<value> \
&time=YYYY.MM.DD˜HH:mm: s s \
&type=<a t t r i b u t e type>

118

3.4 REST API

<REST END POINT>/measur ingpoint / submit

3.4.2 Listing Trajectory Attributes

Using the REST call ”/vectors/periods” we obtain a time-
ordered list of time periods and the values of the attributes
for these periods.

<REST END POINT>/ve c t o r s / pe r i od s \
? t r a j e c t o r y=<t r a j e c t o r y name>
&begin=YYYY.MM.DD˜HH:mm: s s
&end=YYYY.MM.DD˜HH:mm: s s

The result of the REST call is an XML document. Each time
period is defined as a vector containing the values of its at-
tributes as they are valid for the according period. The vectors
are chronologically ordered by their time periods. Basically,
this vector output already represents a trajectory as intercon-
nected segments. However, the attribute values are not inter-
polated in this output. The example below is an excerpt of the
data from the MediaWiki example I presented in section 2.2.1
(Worldlines of Learning). The ”view” attribute holds the nu-
meric id of the latest Wiki article a student has viewed. The
”edit” attribute indicates which article a student has edited.
The student of the example below has swapped between view-
ing and editing the same article (identified by its id 47) which
lead to the following data:

<hypercubedb>
<vec to r begin =”2017/1/11˜11:58:37”

end=”2017/1/11˜12:59:51”>
<a t t r i b u t e name=”view” value=”47”/>

</vector>
<vec to r begin =”2017/1/11˜12:59:51”

end=”2017/1/11˜13:0:59”>
<a t t r i b u t e name=”view” value=”47”/>
<a t t r i b u t e name=”ed i t ” value=”47”/>

</vector>
<vec to r begin =”2017/1/11˜13:0:59”

119

3 Hypercube Database

end=”2017/1/11˜20:38:11”>
<a t t r i b u t e name=”view” value=”47”/>
<a t t r i b u t e name=”ed i t ” value=”47”/>

</vector>
<vec to r begin =”2017/1/11˜20:38:11”

end=”2017/1/11˜20:38:49”>
<a t t r i b u t e name=”view” value=”47”/>
<a t t r i b u t e name=”ed i t ” value=”47”/>

</vector>
<vec to r begin =”2017/1/11˜20:38:49”

end=”f o r e v e r”>
<a t t r i b u t e name=”view” value=”47”/>
<a t t r i b u t e name=”ed i t ” value=”47”/>

</vector>
</hypercubedb>

Using the REST method ”/vectors/csv”, a trajectory can also
be obtained in the form of CSV data. This method takes the
same parameters as above.

<REST END POINT>/ve c t o r s / csv \
? t r a j e c t o r y=<t r a j e c t o r y name> \
&begin=YYYY.MM.DD˜HH:mm: s s \
&end=YYYY.MM.DD˜HH:mm: s s

The output is provided as a comma-separated list, with each
row representing an attribute and the last row listing the be-
ginning of the according time period in the form a UNIX time
stamp. This output type can be used for further processing.
For example figure 2.6 on page 45 was generated with such
CSV data using the programming language ”R”.

stud15 view , 4 7 , 4 7 , 4 7 , . . .
s tud15 ed i t , 4 7 , 4 7 , 4 7 , . . .
stud15 time ,1484135991 ,1484136059 ,1484163491 , . . .

3.4.3 Visualizing Vectors

In section 2.2.1 (Worldlines of Learning) I provided multiple
examples of trajectory visualizations using a color map tech-

120

3.4 REST API

nique. These images are generated using the ”graphics” REST
method. Each method call generates such a graphical visual-
ization for one single trajectory.

<REST END POINT>/graph i c s \
? t r a j e c t o r y=<t r a j e c t o r y name> \
&begin=YYYY.MM.DD˜HH:mm: s s \
&end=YYYY.MM.DD˜HH:mm: s s \
&width=<image width in px> \
&ranges=<range l i s t >

The value for the ”ranges” parameter is a list of attributes
and their value ranges:

&ranges=view=0−45; e d i t=0−45

This parameter is used to define the color range of the color
map for the respective attribute. If a range for an attribute
is not specified, the system will take the minimum and maxi-
mum value of the attribute as it is stored in the database and
distribute the colors over that range. If attributes of multiple
trajectories are to be compared, the range parameter should
be specified to obtain the same color range for each trajectory.

3.4.4 Grid Index Creation

The REST method ”/trajectories/index/create” is used to
construct a grid index over existing trajectories. The ”grids”
parameter determines how many intervals on each dimension
shall be used. The number of created cells equates to ng with
n denoting the number of dimensions and g denoting the value
for the ”grids” parameter. In this version of the implementa-
tion the extend of a grid cell depends on the distribution of the
data on each dimension. If square-shaped cells are required,
the data should be normalized before insertion takes place.

<REST END POINT>/ t r a j e c t o r i e s / index / c r e a t e \
? dimensions=<a t t r i b u t e names> \
&gr i d s=<i n t e r v a l count>

121

3 Hypercube Database

3.4.5 Executing Spatio-Temporal Queries

The REST API provides an end point to formulate range
and k nearest neighbor queries. The queries are pseudo-SQL
statements which means that they are not based on a fully-
developed database language. They are rather function calls
translated into an SQL-like structure. The rationale behind
is that in future work statements of such queries should be
integrated in a complete spatio-temporal query language.

A spatio-temporal range query takes as its arguments a time
period, a comma-separated list of trajectories and a ”where”
clause which contains a conjunction of ranges for each dimen-
sion. If the trajectory list is left empty the query refers to all
trajectories stored in the database. Otherwise the search is
restricted to this set of trajectories.

VALIDTIME
PERIOD[YYYY.MM.DD˜HH:mm: ss−YYYY.MM.DD˜HH:mm: s s)
SELECT TRAJECTORIES[< t r a j e c t o r y l i s t >]
WHERE <a t t r i b u t e name> BETWEEN(< lower>,<upper>)
AND <a t t r i b u t e name> BETWEEN. . .

The arguments of a nearest neighbor query include a trajec-
tory list which may be empty and the parameter ”K” defining
how many neighbors are to be found. The ”where” clause
contains a conjunction of query points.

SELECT NEAREST NEIGHBOR[< t r a j e c t o r y l i s t >](<K>)
WHERE NEARTO{<query point>}
AND NEARTO{ . . .

A query point must be defined by its coordinates in the Cog-
nitive Spacetime and may include an optional time period for
which this query point is valid. The listing below gives an
example of a query point including a time period.

SELECT NEAREST NEIGHBOR[] (3)
WHERE NEARTO {

PERIOD[2017 . 0 1 . 2 3˜12 : 0 0 : 0 0 −2017 . 0 1 . 2 8˜11 : 3 0 : 0 0) ;

122

3.5 Database Implementation

ed i t =47;
view=35

}
AND NEARTO{ . . .

3.5 Database Implementation

The Hypercube Database uses TimeDB for temporal indexing.
TimeDB is a fully functional temporal database using the AT-
SQL query language [15, 16, 48, 62, 104]. ATSQL is designed
as a super set of SQL, which makes it possible to combine
temporal and non-temporal relations and queries. In contrast
to standard SQL, ATSQL provides temporal predicates and
operators to work on time periods. The TimeDB structure of
the Hypercube Database fulfills two functions: storing arbi-
trary measuring points to temporal attributes and mapping
them to vectors and trajectory segments.

3.5.1 Entity Relationship Model

The TimeDB database itself does actually not store trajectory
segments as real geometric objects. Instead it links attributes
to the trajectories they belong to. It uses time periods to
define which parts of the trajectory form a segment.

The entity relationship model of the TimeDB structure is
shown by figure 3.9. A trajectory has multiple attributes.
An attribute is identified by its name and the trajectory it be-
longs to. If the same data is measured for several individuals,
they will have attributes with the same name but each of them
is associated with a unique trajectory. An attribute has also
a specified type which may be either string, boolean, double
or integer. An attribute has multiple values which are distin-
guished by consecutive time periods for which they are valid.

123

3 Hypercube Database

Figure 3.9: E-R model of the TimeDB structure

124

3.5 Database Implementation

The value of an attribute consists of different representations
which are string, boolean, double or integer. The type of the
attribute determines which representation is the primary one.

At the highest level there are segments which represent sub-
sequent time periods of a trajectory. The segment relation
only contains the information which parts of a trajectory are
valid for certain time periods and which segment succeeds an-
other one. This means that the geometric information about
trajectories is not contained in the database explicitly. The
information rather concludes from a specific linking of data
with time periods.

The dotted lines in figure 3.9 indicate foreign key relations.
An attribute value is linked with its attribute by the keys
”attribute name” and ”trajectory name”. An attribute and
a segment are linked with trajectories by the key ”trajectory
name”. Moreover, a segment is linked to its temporal successor
by the ”next segment id” key. Note that subsequent segments
could also be identified by their time periods. However, linking
consecutive segments is easy to implement and more efficient.

3.5.2 ATSQL Representation

In the following I show how specific database queries and struc-
tures are implemented using the ATSQL language.

Table Construction

The listings below show how the tables ”trajectory”, ”at-
tribute”, ”attributevalue” and ”segments” are constructed.
Only ”attributevalue” and ”segment” are temporal tables as
they include time periods. In ATSQL time periods are not
created as explicit columns. Instead a temporal table is cre-
ated using the key phrase ”AS VALIDTIME” concluding the

125

3 Hypercube Database

SQL definition. The ATSQL statements use the following ab-
briviations: ”aname” (attribute name), ”tname” (trajectory
name) and ”atype” (attribute type).

CREATE TABLE t r a j e c t o r y (tname VARCHAR(2 0 0)) ;

CREATE TABLE a t t r i b u t e (
aname VARCHAR(200) ,
tname VARCHAR(200) ,
atype VARCHAR(30)

) ;

CREATE TABLE a t t r i bu t e va l u e (
aname VARCHAR(200) ,
tname VARCHAR(200) ,
doubleva lue NUMBER,
in tva l u e INTEGER,
s t r i n gva l u e VARCHAR(300) ,
boo lva lue NUMBER(1)

) AS VALIDTIME;

CREATE TABLE segment (
id VARCHAR(200) ,
n ex t id VARCHAR(200) ,
tname VARCHAR(200)

)AS VALIDTIME;

Insertion of Measuring Points

Trajectories and their attributes do not have to be configured.
Instead, trajectories and their attributes are created in the
database when names appear in a REST call for the first time.
The first insertion of a measuring point belonging to a specific
attribute of a trajectory at time t0 will create an attribute with
the time period [t0, forever). Any following measuring point
causes a splitting of the vector that embeds the measuring
point. The embedding vector is deleted and replaced by two
consecutive vectors. The measuring points do not have to be
inserted in chronological order, it is the definition of the time

126

3.5 Database Implementation

point in the REST call, which matters. Consider the following
example:

1. The first measuring point is inserted at t0 which results
in a single attribute value which is valid for [t0, forever).

2. The second measuring point is inserted at t2 > t0 leading
to two attribute values for [t0, t2) and [t2, forever).

3. The third measuring point is inserted at t1 with t0 <
t1 < t2 and the result is three vectors for the time periods
[t0, t1), [t1, t2), [t2, forever).

The ATSQL statement for a single measuring point insertion
is listed below:

VALIDTIME
PERIOD[YYYY.MM.DD˜HH:mm: ss−YYYY.MM.DD˜HH:mm: s s)
INSERT INTO at t r i bu t e va l u e VALUES(

’< a t t r i b u t e name> ’ , ’< t r a j e c t o r y name> ’ ,
<double val>,< i n t val >,’< s t r i n g val >’,<bool val >,
< i n t e r n a l id >);

Trajectory Segmentation

The ”attributevalue” table stores single attributes according
to their valid time periods. A trajectory comprises several
time lines of such attributes. A segment of a trajectory is
defined by the smallest time interval which does not inter-
sect or contain a time period of other attributes belonging to
the same trajectory, which is again illustrated in figure 3.10..
These time intervals are stored in the ”time period” field in
the ”segment table”.

Mathematically this segmentation can be expressed as follows.
Let T denote a trajectory. Let ai be the ith attribute of T .
Let maij be the jth measuring point of ai and let t(maij)
be the respective time point. Finally, let S(T) denote the
”segmentation” of T over its attributes ai. A segmentation

127

3 Hypercube Database

Figure 3.10: Transformation of vectors to segments

over the attributes of a trajectory is defined as the sequence
of consecutive time intervals Φk = [φkstart

, φkend
) that result

from dividing the time line by all measuring points maij of all
attributes ai:

S(T) = {[t(macd), t(maef)) | t(macd) < t(maef)
∧

6 ∃ magh : t(macd) < t(magh) < t(maef)}

Basically a database query language like SQL or ATSQL works
on algebra of sets and first order logic. The expression above
can therefore be transformed into an ATSQL statement yield-
ing the lower and upper bounds of the respective time inter-
vals. The result of this query is inserted into the ”segment”
table in the form of time periods. The ATSQL query below
performs the desired segmentation of a trajectory. This query
also illustrates how temporal predicates and operators are used
with the ATSQL language.

NONSEQUENCED VALIDTIME SELECT
BEGIN(VALIDTIME(a)) , BEGIN(VALIDTIME(b))
FROM at t r i bu t e va l u e AS a , a t t r i bu t e va l u e AS b
WHERE

128

3.5 Database Implementation

a . tname=’< t r a j e c t o r y name>’ AND
b . tname=’< t r a j e c t o r y name>’ AND
BEGIN(VALIDTIME(a)) PRECEDES
BEGIN(VALIDTIME(b)) AND
NOT EXISTS (

VALIDTIME SELECT
BEGIN(VALIDTIME(z))
FROM at t r i bu t e va l u e AS z
WHERE

z . tname=’< t r a j e c t o r y name>’ AND
BEGIN(VALIDTIME(a)) PRECEDES
BEGIN(VALIDTIME(z)) AND
BEGIN(VALIDTIME(z)) PRECEDES
BEGIN(VALIDTIME(b))

) ;

3.5.3 Segment Interpolation

The database itself does not store interpolated trajectory seg-
ments. Interpolation of segments is done at run time in specific
scenarios. When a grid index is created, segments may inter-
sect the boundaries of cells. These segments have to be split
at the points of intersection. For these intersection points, in-
terpolated data is needed. Another scenario is the refinement
step of a spatio-temporal query. In the preliminary step the
spatio-temporal query uses information from the grid index
telling only which segments are located in the affected cells of
the query.

In the refinement step, exact distances between query objects
and segments are calculated. For this calculation the con-
crete geometric position of the segments is taken which re-
quires interpolated data. For the interpolation of a segment,
the coordinates of its start and end point are obtained from
the ”attributevalue” table. Then a linear interpolation of the
attribute values is performed.

129

3 Hypercube Database

Let ai(t) denote the non-interpolated value of an attribute be-
longing to a single trajectory at a specific time point t. Let fur-
ther be Int(ai(t)) the linearly interpolated value. In order to
calculate Int(ai(t)) we first determine the starting and ending
time point of the segment which contains the requested time
point t. Let them be denoted by tstart and tend. They are ob-
tained from the ”attributevalue” table. Note that in TimeDB
the value of an attribute at its ending time point equates to
the value of the successive time period because TimeDB works
with time intervals which are open on the right.

First we calculate the slope of the interpolation function:

slope(ai(t)) =
ai(tend)− ai(tstart)

tend − tstart

Finally, we get the interpolated value:

Int(ai(t)) = ai(tstart) + slope(ai(t)) · (t− tstart)

3.5.4 Grid Index

The grid index is created independently from the underlying
data. In the first place only measuring points are inserted
into the database. The grid index can be created afterwards
at any point in time. Consider the database structure as it was
explained in section 3.5.1 (Entity Relationship Model). The
information about trajectory segments is stored in the ”seg-
ment” table containing time periods and segment ids. This in-
formation is only linked with the data stored in the ”attribute-
value” table. This way the entire segmentation and hence all
information about trajectories is stored independently from
the originally inserted data. This allows us to first collect
data and then decide about the granularity of the grid index
based on the distribution of the data. In addition, it would

130

3.5 Database Implementation

also be possible to first create the index and to put the respec-
tive segments into the grid at the moment when measuring
points are inserted. However, this was not implemented in the
Hypercube Database prototype because it was designed as an
experimental system.

The grid is created by subdividing the entire value range on
each dimension into an equal number of intervals. If the data
is not distributed equally on each dimension — which is very
likely — we obtain a grid in the form of hyper-rectangulars.
To obtain a square-shaped grid, the data should be normalized
on each dimension before the grid is created. An advanced
version of the system might also allow for defining interval
numbers and lengths on each dimension separately.

Let n be the number of dimensions, let m denote the number
of intervals on a dimension and let li denote the length of an
interval on the ith dimension. The intervals along a single
dimension are enumerated from 1 to m. Suppose there is a n-
dimensional vector v(t) which is defined by its attribute values:

v(t) =


a1(t)

a2(t)

...

an(t)


From the vector v we can directly compute the coordinates of
the grid cell c(t), in which this point is located.

c(t) =


da1(t)/l1e
da2(t)/l2e

...

dan(t)/lne



131

3 Hypercube Database

Note that although the time parameter t is used here, the grid
index implements only spatial indexing whereas time is man-
aged by the TimeDB back end. When a segment is inserted
into the grid index, we determine the spatial coordinates of
its start and end point. The TimeDB back end uses time pe-
riods in the form [tstart, tend) which are open on the right.
Therefore, the ending coordinates of a segment equate to the
starting coordinates of its successive segment. Using the above
calculation for c(t) the cell coordinates for both the start and
end point of the segment are computed. If both the starting
and the ending coordinates are located in the same cell, the
segment id from the ”segment” table is associated with this
cell. If the segment intersects two or more cells it is split into
child segments. For this purpose the attributes of the segment
are linearly interpolated at the cell boundaries and their re-
spective time points are deduced. These time points are used
to update the ”segment” table inserting the time periods of
the child segments. These child segments are assigned new ids
which are associated with the affected grid cells.

Searching the grid index for segments is straight forward. Re-
member that the Hypercube Database uses range queries as
the basis for more sophisticated queries. If the search window
of a range query has equal lengths on each dimension and if
we use the Chebyshev distance, we obtain a circular query.
Nearest neighbor queries are then composed of incremental
circular queries. Therefore it is sufficient to define a simple
range query as the other queries are built from it and behave
in an analogue way.

A range query is constrained by its lower and upper boundary
on each dimension. Again, let li denote the length of an in-
terval on the ith dimension. Let rangei,lower denote the lower
and let rangei,upper denote the upper boundary of the query
range with respect to the ith dimension in the Cognitive Space-
time. From this information we can immediately calculate the
number ci of the affected lower and upper interval.

132

3.5 Database Implementation

ci,lower = drangei,lower/lie
ci,upper = drangei,upper/lie

From this calculation we obtain the set Ci containing all af-
fected interval numbers for the ith dimension:

Ci = {ci ∈ Z | ci,lower ≤ ci ≤ ci,upper}

Now, let R denote the set containing all n-dimensional grid
cells which are covered by the range query. R is computed as
the cartesian product of all interval number sets Ci:

R =
n×

i=1

Ci

An element of R is an ordered n-dimensional tuple of interval
numbers ci. Each of these tuples addresses a specific grid cell
that is affected by the query range. If the query window af-
fects many intervals on multiple dimensions, the cardinality of
R can become extremely large which can even lead to combi-
natorial explosion. However, this problem is easy to solve. As I
have explained in section 3.3.2 (Spatial Indexing) an improve-
ment is achieved with a hierarchical grid index with multiple
levels of granularity. Depending on the extend of query ranges
either a grid with lower or higher granularity can be chosen.

133

4 Summary and Conclusion

In this work I have introduced the Cognitive Spacetime model
which is a novel method to make learning behavior measur-
able and analyzable. A dominant problem in learning analyt-
ics has always been the fact that we are faced with complex
data from heterogeneous sources. With Cognitive Spacetime,
such data can be modeled as spatio-temporal trajectories in
an abstract high-dimensional space. The problem of analyz-
ing learning histories is reduced to a purely geometric problem
which can be solved on the basis of very simple distance mea-
sures whereby similarities among learners are expressed by
spatial and temporal nearness.

According algorithms for nearest neighbor searches and clus-
tering are derived from the field of Geo Informational Systems.
In section 2.3.2 (Spatio-Temporal Queries) I have developed
a hierarchical framework of spatio-temporal queries which is
easy to implement and can be adopted to multiple distance
metrics and indexing techniques. Remember that the basic
query of this framework is a simple range query on the top
of which circular queries, nearest neighbor queries and clus-
tering can be implemented. In case the distance metric is
modified or the underlying spatial index structure is changed
it is only the range query which has to be adapted. Therefore
this framework offers a workable and extendable tool set for
the implementation of a spatio-temporal database system. In
particular, the proposed grid index structure is efficient for
even high-dimensional spaces.

135

4 Summary and Conclusion

However, such a database system is not enough. We also need
respective meta-data to build the Cognitive Spacetime in a
way that can utilize spatio-temporal nearness as a useful met-
ric. In section 2.2.3 (Learning Histories as Spatio-Temporal
Trajectories) I introduced a guideline to annotate learning ma-
terial in an appropriate way and I explained how the Cognitive
Spacetime is created from this. Note that there is not one Cog-
nitive Spacetime. Instead there are many possible Spacetimes
depending on the set of meta data that is used. Which set of
meta data is useful will strongly depend on context and pur-
pose. Fortunately, collecting data and annotating them are
two independent processes. We can first gather information
about the content on which learners progress and annotate
the information afterwards. This way we can construct mul-
tiple Cognitive Spacetimes for the same content and perform
different analysis on them.

The Cognitive Spacetime has a particular characteristic: it
does not describe learners in the first place. Instead it de-
scribes objects and abstract places with which learners inter-
act. Therefore, we actually do not analyze learners themselves
but the artefacts and traces they leave behind. This approach
is not unusual. You can find it in cultural and social sci-
ences and especially in archeology. We can learn a lot about
people’s history and minds by examining their legacies and
records. Actually this is the preferred method if we can not
talk directly to the respective persons. Cognitive Spacetime is
therefore best understood as an artificially constructed place
which makes learners leave some artefacts and traces which
we can analyze.

Once a Spacetime is defined we are not limited to analyzing
data. We can furthermore create adaptive learning environ-
ments which support the learner in an interactive style. In
the introductory chapter under section 1.2 (Computability)
I have discussed the essence of algorithms and the fact that
basically they are no more than mechanical step-by-step pro-

136

cedures. However, I have also introduced the concept of the
adaptive Turing machine which is absolutely sufficient to im-
plement a mutually adaptive human-machine interaction. The
Cognitive Spacetime model is perfectly suited to build such an
adaptive system without the need for too exhaustive previous
knowledge about a learner. Indeed, it enables us to implement
adaptive systems which works on very fuzzy and incomplete
knowledge.

In order to create a model of a learner there are initially two
obvious solutions. First we can try to model a hypotheti-
cal learner by investigating learning behaviors and influencing
factors as broadly as possible and create some kind of user
model from which the system derives its instructional proce-
dures. Second we might use deep learning algorithms to find
patterns and perform probability-based forecasts for learning
behavior. Both approaches require extensive gathering of data
as a preliminary step. A third solution is in fact the Cogni-
tive Spacetime model which does not require a too extensive
previous knowledge.

It may occur that we do not know anything about a learner at
the beginning. In this case an adaptive learning environment
which is based on Cognitive Spacetime might recommend an
initial learning pathway to the user. This initial pathway may
be constructed by a teacher as a default version. Let us sup-
pose that the learner is not forced but only recommended to
follow the system’s instructions and that the learning environ-
ment is open enough to support a constructivist learning style.
If these two criteria are satisfied, the learner is free enough to
deviate from the system’s recommendations. The deviations
will then feed the mutual adaptivity cycle and provoke ac-
cording updates of the knowledge base incorporated by the
system. Concretely, this means that the learner’s trajectory
moves away from the initial pathway but it gets closer to other
trajectories in the Cognitive Spacetime. The adaptive learning
environment will then generate new recommendations. This is

137

4 Summary and Conclusion

comparable to a GPS navigation system which does not force
a driver to return to the original route at any cost. Instead,
it calculates new alternative routes with every deviation from
the initial route. In this concept, deviations of a learner are
not a casual evil. Instead they are absolutely appreciated and
needed to feed the adaptivity cycle. At the same time the de-
viating trajectory of this particular learner contributes to the
growth of the knowledge base.

The mutual adaptivity cycle is also similar to how a teacher
interacts with her students. The teacher may start from a
stereotypical image of a student, providing a provisional ori-
entation. Continuous feedback and interaction will then refine
the teacher’s and the student’s image and behavior. The qual-
ity of teaching and learning therefore relies on the quality of
this communication.

Remember the Turing test which I explained in section 1.5
(The Empathetic Algorithm). The Turing test is supposed to
decide whether a machine can be considered ”intelligent”. The
special feature of this test is its focus on the mere interaction
between a human and the machine. The model of the adap-
tive Turing machine and its mutual interaction with the user
reflects the concept of the Turing test. With the mutual adap-
tivity cycle ”intelligence” is neither located with the user nor
inside the algorithm. ”Intelligence” in this sense is something
that is constructed within the human-machine interaction. It
does not exist in a physical place like the user or the machine.

Let me now sketch a scenario how the Cognitive Spacetime
model could be used within an organization. Throughout this
work I have used the term ”Learning Object” (LO). A LO may
be anything that can be regarded as an atomic entity of learn-
ing content. This may be a book, a pdf file, a video clip, an
audio file or it may be a course lesson taking place at a physical
location. It may even be a person having some specific knowl-
edge or expertise. Generally speaking it may be any form

138

of resource which provides people with information. In the
world of the semantic web any resource has a unique identifier
— usually encoded by a URI (Uniform Resource Identifier).
In an organization, which may be a university, a company
or anything else, resources of information may be provided
by multiple sources. These may be web servers, document
management systems, learning management systems, stream-
ing platforms or catalogs and databases containing informa-
tion about non-digital resources. It is insignificant by which
source a resource is provided. Whenever such a resource can
be identified by a URI it can also be described with any set of
meta data.

In order to establish adaptive environments based on the Cog-
nitive Spacetime model we need the following: first we need
an instance of the Hypercube Database (HCDB). Second we
need a semantic layer which enriches the resource identifiers
(URIs) with appropriate meta data. Third we need a notifica-
tion mechanism to inform the HCDB instance when someone
accesses a resource together with the meta data of that re-
source.

The semantic layer may be a central or a distributed system
which only links the URIs with meta data. One possible so-
lution may be one central or multiple instances of a Semantic
MediaWiki. This layer holds the URIs of the LOs wherever
they may be located. Within the MediaWiki these LOs have
to be annotated with meta data which form the dimensions
of the Cognitive Spacetime. The advantage of using Semantic
MediaWiki is that its content and semantic annotations are
both human-readable and machine-processable.

Now suppose that data sources like a web server, a document
management systems, a learning management system or any
other type of platform implement an intermediate process to
send notifications to the HCDB instance. The intermediate
process first contacts the responsible MediaWiki instance to

139

4 Summary and Conclusion

retrieve the meta data associated with the respected URI. The
MediaWiki will hold only LO-specific meta-data. If learner-
specific meta-data is to be included, the intermediate process
has to add this information. Then the intermediate process
notifies the HCDB instance using the REST interface which I
described in section 3.4 (REST API). Besides the meta-data
this notification must contain a unique identifier of the person
who accesses the resource. The identifier may be a pseudonym
to protect privacy.

Technically, this implementation is pretty clear. However, a
fundamental requirement is the definition of a meta data set
which satisfies the conditions I defined in section 2.2.3 (Learn-
ing Histories as Spatio-Temporal Trajectories). Although I
provided some experimental data in section 2.2.1 (Worldlines
of Learning) to illustrate the concept of spatio-temporal near-
ness, there is no universal advice for the creation of an appro-
priate meta data set. The work I present here is to be under-
stood as a theoretical foundation. The development of good
meta data sets as well as their empirical proof must therefore
be the issue of future work.

Furthermore, the Hypercube Database prototype is an ex-
perimental system which served as a proof-of-concept and a
test setup to validate the discussed data structures and al-
gorithms. It is — in my opinion — not yet a fully-operable
database system. To enhance the HCDB prototype it should
be programmed more closely to the underlying hardware. This
means in particular that the indexing technique should con-
sider the way data is physically stored on the hardware in or-
der to optimize access speed. Even more improvements could
be achieved by more sophisticated parallelization techniques.
Furthermore, the HCDB prototype does not provide a real
query language. It only implements a pseudo language for
range and nearest neighbor queries as I explained in section
3.4.5 (Executing Spatio-Temporal Queries). A possible en-

140

hancement might consist of integrating a range and nearest
neighbor query syntax into the ATSQL query interface.

141

Bibliography

[1] T. Abraham and J. F. Roddick. Survey of spatio-
temporal databases. Geoinformatica, 1999.

[2] R. Agrawal, C. Faloutsos, and A. Swami. Efficient sim-
ilarity search in sequence databases. In Foundations of
Data Organization and Algorithms. Springer Berlin Hei-
delberg, 1993.

[3] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Ragha-
van. Automatic subspace clustering of high dimensional
data for data mining applications. In Proceedings of the
1998 ACM SIGMOD International Conference on Man-
agement of Data, 1998.

[4] M. Ankerst, M. M. Breunig, H. Kriegel, and J. Sander.
Optics: Ordering points to identify the clustering struc-
ture. In Proceedings of the 1999 ACM SIGMOD Inter-
national Conference on Management of Data, 1999.

[5] G. Antoniou, E. Franconi, and F. van Harmelen. Intro-
duction to semantic web ontology languages. In Reason-
ing Web, 2005.

[6] J. B. Arbaugh and Raquel Benbunan-Fich. The impor-
tance of participant interaction in online environments.
Decision Support Systems, 2007.

[7] L. Balasubramanian and M. Sugumaran. A state-of-art
in r-tree variants for spatial indexing, 2012.

143

Bibliography

[8] O. Balovnev, M. Breunig, A. B. Cremers, and S. Shu-
milov. Extending geotoolkit to access distributed spatial
data and operations. In Proceedings of the 12th Interna-
tional Conference on Scientific and Statistica Database
Management, 2000.

[9] S. Bechhofer et al. Owl web ontology language reference.

[10] L. T. Benjamin. A History of Teaching Machines. Amer-
ican Psychologist, 1988.

[11] S. Berchtold, D. A. Keim, and H. Kriegel. The x-tree:
An index structure for high-dimensional data. In Pro-
ceedings of the 22th International Conference on Very
Large Data Bases, 1996.

[12] W. Bhuasiri, O. Xaymoungkhoun, H. Zo, J. J. Rho, and
A. P. Ciganek. Critical success factors for e-learning in
developing countries: A comparative analysis between
ict experts and faculty. Computers & Education, 2012.

[13] M. Böhlen. Managing temporal knowledge in deductive
databases, 1994. Dissertation submitted to the Swiss
Federal Institute of Technology Zurich.

[14] M. H. Böhlen. Temporal database system implementa-
tions. SIGMOD Rec., 1995.

[15] A. Carvalho, C. Ribeiro, and A. Sousa. Spatial timedb -
valid time support in spatial dbms. In Proceedings of the
2nd International Advanced Database Conference, 2006.

[16] A. Carvalho, C. Ribeiro, and A. Sousa. A spatio-
temporal database system based on timedb and oracle
spatial. In Research and Practical Issues of Enterprise
Information Systems. Springer US, 2006.

[17] V. P. Chakka, A. Everspaugh, and J. M. Patel. Index-
ing large trajectory data sets with seti. In Proceedings

144

Bibliography

of the Conference on Innovative Data Systems Research
(CIDR), 2003.

[18] M. A. Cheema, , Y. Yuan, and X. Lin. Circulartrip:
An effective algorithm for continuous knn queries. In
Advances in Databases: Concepts, Systems and Appli-
cations. Springer Berlin Heidelberg, 2007.

[19] M. A. Cheema. CircularTrip and ArcTrip: Effective
Grid Access Methods for Continuous Spatial Queries.
PhD thesis, 2007.

[20] Zaiben Chen, Heng Tao Shen, Xiaofang Zhou, Yu Zheng,
and Xing Xie. Searching trajectories by locations:
An efficiency study. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of
Data, 2010.

[21] J. Chomicki, D. Toman, and M. H. Böhlen. Querying
atsql databases with temporal logic. ACM Transactions
on Database Systems (TODS), 2001.

[22] A. Church. A note on the entscheidungsproblem. The
Journal of Symbolic Logic, 1936.

[23] A. Church. An unsolvable problem of elementary num-
ber theory. American Journal of Mathematics, 1936.

[24] A. Church. A formulation of the simple theory of types.
Journal of Symbolic Logic, 1940.

[25] C. Combi et al. Querying temporal clinical databases
with different time granularities: the gch-osql language.
In Proceedings of the Annual Symposium on Computer
Applications in Medical Care, 1995.

[26] V. T. de Almeida, R. H. Güting, and T. Behr. Querying
moving objects in secondo. In 7th International Confer-
ence on Mobile Data Management (MDM’06), 2006.

145

Bibliography

[27] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. Communications of the
ACM, 2008.

[28] E Delen, J. Liew, and V. Willson. Effects of interactivity
and instructional scaffolding on learning: Self-regulation
in online video-based environments. Computers & Edu-
cation, 2014.

[29] V. Dimitrova and M. Lüdmann. Zur Entwicklung der
Fähigkeit zur Perspektivenübernahme. Springer, 2014.

[30] H.C. Doets and van Eijck D.J.N. The Haskell Road to
Logic, Maths and Programming. College Publication,
2012.

[31] W. Dreyer, A. Kotz Dittrich, and D. Schmidt. Using the
calanda time series management system. SIGMOD ’95
Proceedings of the 1995 ACM SIGMOD international
conference on Management of data, 1995.

[32] A. G. Emslie. An efficient indexing structure for trajec-
tories in gis. 2007.

[33] L. Ertoz, M. Steinbach, and V. Kumar. A new shared
nearest neighbor clustering algorithm and its applica-
tions. In Workshop on Clustering High Dimensional
Data and its Applications at 2nd SIAM International
Conference on Data Mining, 2002.

[34] M. Erwig. Design of spatio-temporal query languages. In
NSF/BDEI Workshop on Spatio-Temporal Data Models
of Biogeophysical Fields for Ecological Forecasting, 2002.

[35] M. Erwig and M. Schneider. STQL — a spatio-temporal
query language. In Mining Spatio-Temporal Information
Systems, 2002.

[36] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-
based algorithm for discovering clusters in large spatial

146

Bibliography

databases with noise. In Proceedings of the Second Inter-
national Conference on Knowledge Discovery and Data
Mining, 1996.

[37] E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodor-
idis. Nearest neighbor search on moving object trajec-
tories. In Advances in Spatial and Temporal Databases.
Springer Berlin Heidelberg, 2005.

[38] E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis.
Algorithms for nearest neighbor search on moving object
trajectories. GeoInformatica, 2007.

[39] K. Fuchs and P. A. Henning. Computer-Driven Instruc-
tional Design with Intuitel: An Intelligent Tutoring In-
terface for Technology-Enhanced Learning. River Pub-
lishers Series in Innovation and Change in Education,
2017.

[40] K. Fuchs and P. A. Henning. Cognitive space time:
A model for human-centered adaptivity in e-learning.
In Proceedings of the 24th IEEE International Con-
ference on Engineering, Technology and Innovation
(ICE/ITMC), 2018, 2018.

[41] K. Fuchs, P. A. Henning, and M. Hartmann. Intuitel
and the hypercube model – developing adaptive learning
environments. Journal on Systemics, Cybernetics and
Informatics: JSCI, 14(3), 2016.

[42] Y. Gao, C. Li, G. Chen, L. Chen, X. Jiang, and C. Chen.
Efficient k-nearest-neighbor search algorithms for histor-
ical moving object trajectories. Journal of Computer
Science and Technology, 2007.

[43] K. Gödel. Ub̈er formal unentscheidbare saẗze der prin-
cipia mathematica und verwandter systeme i. Monat-
shefte für Mathematik 38(1), 1931.

147

Bibliography

[44] L. R. Goldberg. The structure of phenotypic personality
traits. American Psychologist, 1993.

[45] S. Grumbach, P. Rigaux, M. Scholl, and L. Segoufin.
dedale, a spatial constraint database. In Database Pro-
gramming Languages. Springer Berlin Heidelberg, 1998.

[46] S. Grumbach, P. Rigaux, and L. Segoufin. Efficient
multi-dimensional data handling in constraint databa-
ses, 1998.

[47] S. Grumbach, P. Rigaux, and L Segoufin. On the ortho-
graphic dimension of constraint databases. In Database
Theory — ICDT’99. Springer Berlin Heidelberg, 1999.

[48] H. Guo, Y. Tang, X. Yang, and X. Ye. Improvement
and Extension to ATSQL2. Springer Berlin Heidelberg,
2010.

[49] R. H. Güting, T. Behr, V. Almeida, Z. Ding, F. Hoff-
mann, and M. Spiekermann. Secondo: An extensible
dbms architecture and prototype. Technical report, Fer-
nUniversität in Hagen, 2004.

[50] R. H. Güting, T. Behr, and J. Xu. Efficient k-nearest
neighbor search on moving object trajectories. The
VLDB Journal, 2010.

[51] R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jensen,
N. A. Lorentzos, E. Nardelli, M. Schneider, and J. R. R.
Viqueira. Spatio-temporal models and languages: An
approach based on data types. In Spatio-Temporal Da-
tabases: The CHOROCHRONOS Approach, 2003.

[52] R.H. Güting and M. Schneider. Moving Objects Databa-
ses. Morgan Kaufmann Publishers, 2005.

[53] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In Proceedings of the 1984 ACM

148

Bibliography

SIGMOD International Conference on Management of
Data, 1984.

[54] M. Hasan, Muhammad A. C., W. Qu, and X. Lin. Ef-
ficient algorithms to monitor continuous constrained k
nearest neighbor queries. In Database Systems for Ad-
vanced Applications. Springer Berlin Heidelberg, 2010.

[55] P. A. Henning, F. Heberle, A. Streicher, A. Zielinski,
C. Swertz, J. Bock, and S. Zander. Personalized web
learning: Merging open educational resources into adap-
tive courses for higher education. In UMAP Workshops,
2014.

[56] P. A. Henning et al. Intuitel – intelligent tutorial inter-
face for technology enhanced learning. In Proceedings of
the 22nd UMAP Conference, 2014.

[57] P. A. Henning et al. Learning pathway recommendation
based on a pedagogical ontology and its implementation
in moodle. In Proceedings of the DeLFI 2014 conference,
GI Lecture Notes in Informatics, 2014.

[58] D. Hilbert and W. Ackermann. Grundzüge der theoretis-
chen Logik. Springer, 1928.

[59] D. Hilbert and W. Ackermann. Principles of mathemat-
ical logic. Chelsea Pub. Co., 1950.

[60] I. Horrocks, B. Motik, and Z. Wang. The hermit owl
reasoner. In ORE, 2012.

[61] R. A. Jarvis and E. A. Patrick. Clustering using a sim-
ilarity measure based on shared near neighbors. IEEE
Transactions on Computers, 1973.

[62] C. S. Jensen. Temporal database management, 2000.
Dissertation.

[63] P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering
moving clusters in spatio-temporal data. In Advances in

149

Bibliography

Spatial and Temporal Databases. Springer Berlin Heidel-
berg, 2005.

[64] V. Kalyan-Masih. Cognitive egocentricity of the child
within piagetian developmental theory. Transactions of
the Nebraska Academy of Sciences, 1973.

[65] S. Kisilevich, F. Mansmann, M. Nanni, and S. Rinzivillo.
Spatio-temporal clustering. Springer US, 2010.

[66] A. Y. Kolb and D. A. Kolb. The kolb learning style in-
ventory—version 3.1 2005 technical specifications, 2005.

[67] D. A. Kolb. Experiential learning: Experience as the
source of learning and development. PrenticeHall, 1984.

[68] B. Kosko. Fuzziness vs. probability. In International
Journal of General Systems, 1990.

[69] J. Lee, J. Han, and K. Whang. Trajectory clustering:
A partition-and-group framework. In Proceedings of the
2007 ACM SIGMOD International Conference on Man-
agement of Data, 2007.

[70] Torsten Leidig. L3 – towards an open learning environ-
ment. Journal on Educational Resources in Computing
(JERIC), 2001.

[71] S. Liaw. Investigating students’ perceived satisfaction,
behavioral intention, and effectiveness of e-learning: A
case study of the blackboard system. Computers & Ed-
ucation, 2008.

[72] J. Limberg and R. Seising. Representing fuzzy sets in
the hypercube part ii: Developments in the life sciences.
2007 2nd International Workshop on Soft Computing
Applications, 2007.

[73] C. Manolis, D. J. Burns, R. Assudani, and R. Chinta.
Assessing experiential learning styles: A methodological

150

Bibliography

reconstruction and validation of the kolb learning style
inventory. Learning and Individual Differences, 2013.

[74] M. R. Martinez-Torres, S. L. Toral Marin, F. Bar-
rero Garcia, S. Gallardo Vazquez, M. Arias Oliva, and
T. Torres. A technological acceptance of e-learning tools
used in practical and laboratory teaching, according to
the european higher education area. Behaviour & Infor-
mation Technology, 2008.

[75] N. Meder. Didactic requirements of learning environ-
ments: the webdidactics approach of L3.

[76] H. Minkowski. Raum und Zeit. 1909.

[77] H. Minkowski and V. (ed.) Petkov. Minkowski’s papers
on relativity. Minkowski Institute Press, 2012.

[78] F. Murtagh. A survey of recent advances in hierarchical
clustering algorithms. The Computer Journal, 1983.

[79] F. Murtagh and P. Contreras. Methods of hierarchical
clustering. CoRR, 2011.

[80] M. Nanni and D. Pedreschi. Time-focused clustering
of trajectories of moving objects. Journal of Intelligent
Information Systems, 2006.

[81] M. Neteler, M. Hamish Bowman, M. Landa, and
M. Metz. Grass gis: A multi-purpose open source gis.
Environmental Modelling & Software, 2012.

[82] N. Pelekis, I. Kopanakis, G. Marketos, I. Ntoutsi, G. An-
drienko, and Y. Theodoridis. Similarity search in trajec-
tory databases. In Temporal Representation and Reason-
ing, 14th International Symposium on, 2007.

[83] Stephen Petrina. Sidney Pressey and the Automation of
Education, 1924-1934. Technology and Culture, 2004.

151

Bibliography

[84] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel ap-
proaches to the indexing of moving object trajectories.
In Proceedings of the 26th International Conference on
Very Large Data Bases, 2000.

[85] J. Piaget and B. Inhelder. The Psychology Of The Child.
1972.

[86] V. B. Surya Prasath, Haneen Arafat Abu Alfeilat, Omar
Lasassmeh, and Ahmad B. A. Hassanat. Distance
and similarity measures effect on the performance of k-
nearest neighbor classifier - a review. CoRR, 2017.

[87] S. L Pressey. A Machine for Automatic Teaching of Drill
Material. School & Society, 1927.

[88] L. Relly, H.-J. Schek, O. Henricsson, and S. Nebiker.
Physical database design for raster images in concert.
In Advances in Spatial Databases. Springer, 1997.

[89] L. Relly, H. Schuldt, and H. Schek. Exporting database
functionality - the concert way. Bulletin of the IEEE
Computer Society Technical Committee on Data Engi-
neering, 1998.

[90] P. Rigaux, M. Scholl, L. Segoufin, and S. Grumbach.
Building a constraint-based spatial database system:
model, languages, and implementation. Information
Systems, 2003.

[91] Nick Roussopoulos, Stephen Kelley, and Frédéric Vin-
cent. Nearest neighbor queries. Proceedings of the 1995
ACM SIGMOD international conference on Manage-
ment of data, 1995.

[92] N. L. Sarda. Design of an information system using a
historical database management system. In Proceedings
of the 8th. Annual International Conference on Infor-
mation Systems, 1987.

152

Bibliography

[93] N. L. Sarda. Extensions to sql for historical databases.
IEEE Transactions on Knowledge and Data Engineer-
ing, 1990.

[94] D. Schmidt et al. Calanda - a complete solution for time
series management in banking, 1995. UBS, Zurich.

[95] R. Schulmeister. Students, internet, elearning and web
2.0.

[96] R. Schulmeister. Kognitive Heterogenität von Studieren-
den. Beltz, 1985.

[97] R. Schulmeister. Diversität von Studierenden und die
Konsequenzen für eLearning. Waxmann, 2004.

[98] R. Seising. Representing fuzzy sets in the hypercube part
i: A historical note. 2007 2nd International Workshop
on Soft Computing Applications, 2007.

[99] H. M. Selim. Critical success factors for e-learning ac-
ceptance: Confirmatory factor models. Comput. Educ.,
2007.

[100] R. L. Selman. The Growth of Interpersonal Understand-
ing: Developmental and Clinical Analyses. Acadmeic
Press, Inc., 1980.

[101] R. Shearer, B. Motik, and I. Horrocks. Hermit: A highly-
efficient owl reasoner. In OWLED, 2008.

[102] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and
Y. Katz. Pellet: A practical owl-dl reasoner. Web
Semantics: Science, Services and Agents on the World
Wide Web, 2007.

[103] B. F. Skinner. Teaching Machines. Science, 1958.

[104] A. Steiner. A generalisation approach to temporal data
models and their implementations, 1998. Dissertation

153

Bibliography

submitted to the Swiss Federal Institute of Technology
Zurich.

[105] Kurt Stocker. The theory of cognitive spacetime.
Metaphor and Symbol, 2014.

[106] A. Streicher, F. Heberle, and B. Bargel. Intuitel - deliv-
erable 3.2: Specification of the learning progress model.
intuitel resources, 2013. visited on 2018-06-28.

[107] Suman and P. Rani. A survey on sting and clique grid
based clustering methods. International Journal of Ad-
vanced Research in Computer Science, 2017.

[108] C. Swertz, A. Barberi, A. Forstner, A. Schmölz, P. A.
Henning, and F. Heberle. A sms with a kiss. towards
a pedagogical design of a metadata system for adaptive
learning pathways. In Proceedings of EdMedia: World
Conference on Educational Media and Technology 2014,
2014.

[109] C. Swertz et al. A pedagogical ontology as a playground
in adaptive e-learning environments. In Proceedings of
INFORMATIK 2013, conference, GI Lecture Notes in
Informatics, 2013.

[110] A. u. Tansel. Temporal relational data model. IEEE
Trans. on Knowl. and Data Eng., 1997.

[111] A. M. Turing. On computable numbers, with an appli-
cation to the entscheidungsproblem. Proceedings of the
London Mathematical Society, 1937.

[112] A. M. Turing. On computable numbers, with an appli-
cation to the entscheidungsproblem. a correction. Pro-
ceedings of the London Mathematical Society, 1938.

[113] A. M. Turing. Computing machinery and intelligence.
Mind, LIX, 1950.

154

Bibliography

[114] E. Verdú, L. M. Regueras, M. J. Verdú, J. P. de Cas-
tro, D. Kohen-Vacs, E. Gal, and M. Ronen. Intelligent
tutoring interface for technology enhanced learning in a
course of computer network design. 2014 IEEE Frontiers
in Education Conference (FIE) Proceedings, 2014.

[115] E. Verdú Pérez, J.P. De Castro Fernández, M.J.
Verdú Pérez, L. Regueras Santos, and P.A. Henning.
Intelligent tutoring interface for technology enhanced
learning with moodle. In EDULEARN13 Proceedings,
5th International Conference on Education and New
Learning Technologies, 2013.

[116] M. Vlachos, G. Kollios, and D. Gunopulos. Discover-
ing similar multidimensional trajectories. In Proceed-
ings 18th International Conference on Data Engineer-
ing, 2002.

[117] D. Šidlauskas, S. Šaltenis, C. W. Christiansen, J. M. Jo-
hansen, and D. Šaulys. Trees or grids?: Indexing moving
objects in main memory. In Proceedings of the 17th ACM
SIGSPATIAL International Conference on Advances in
Geographic Information Systems, 2009.

[118] B. J. Wadsworth. Piaget’s theory of cognitive and affec-
tive development: Foundations of constructivism. Long-
man Publishing, 1996.

[119] W. Wang, J. Yang, and R. R. Muntz. Sting: A statis-
tical information grid approach to spatial data mining.
In Proceedings of the 23rd International Conference on
Very Large Data Bases, 1997.

[120] A. N. Whitehead and B. Russell. Principia Mathemat-
ica. Cambridge University Press, 1910.

[121] Y Xia, R Wang, X Zhang, and H. Y. Bae. Grid-based
k-nearest neighbor queries over moving object trajecto-

155

Bibliography

ries with mapreduce. International Journal of Database
Theory and Application, 2017.

[122] B. Yi, H. V. Jagadish, and C. Faloutsos. Efficient re-
trieval of similar time sequences under time warping. In
Proceedings 14th International Conference on Data En-
gineering, 1998.

[123] K. Zheng, S. Shang, N. J. Yuan, and Y. Yang. To-
wards efficient search for activity trajectories. In 2013
IEEE 29th International Conference on Data Engineer-
ing (ICDE), 2013.

[124] A. Zielinski and J. Bock. A case study on the use of
semantic web technologies for learner guidance. In Pro-
ceedings of the 24th International Conference on World
Wide Web, 2015.

[125] G. Zimbrao, Jano. M. de Souza, and V. T. de Almeida.
The temporal r-tree.

156

